
cs473: Algorithms Assigned: Wed., Sep. 25, 2019

Problem Set #4

Prof. Michael A. Forbes
Prof. Chandra Chekuri

Due: Thu., Oct. 3, 2019 (10:00am)

All (non-optional) problems are of equal value.

1. (Multiplicative Chernoff Bound). Let X1, . . . ,Xn be independent random variables taking
values over [0, 1]. Let X =

∑
i Xi. Show the following.

(a) For r ∈ (−∞, ln 2], prove that E[erX] ≤ erE[X]+r
2E[X], where you may use (without proof)

that 1 + x ≤ ex ≤ 1 + x+ x2 for such r.

(b) Explain how the above used the independence of the Xi.

(c) Apply Markov’s inequality (Pr[Y ≥ a] ≤ E[Y]/a) to erX, and optimize over r, to conclude
that:

i. For 0 ≤ ε ≤ ln 4, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε
2E[X]/4

ii. For ε ≥ ln 4, Pr[X ≥ (1 + ε)E[X]] ≤ 2−εE[X]/2

iii. For 0 ≤ ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε
2E[X]/4

iv. (Additive Chernoff Bound) For ε ≥ 0, Pr[|X− E[X]| ≥ ε · n] ≤ 2e−ε
2n/4

Note that the additive Chernoff bound suffices for applications such as estimating the errors
in polling, but the multiplicative bound is in general stronger and often needed (e.g. consider
E[X] = lg n and the resulting bound for Pr[X ≥ 2E[X]]). Note also that the above omits one
range of parameters, where one can show that Pr[X ≥ (1 + ε)E[X]] ≤ e−(1+ε) ln(1+ε)E[X]/4 if
ε ≥ 1.

2. Consider a balls and bins experiment with 2n balls but only two bins. Each ball is thrown
independently into a bin chosen uniformly at random. Let X1 be the random variable for the
number of balls in bin 1 and X2 for bin 2. It is easy to see that E[X1] = E[X2] = n. We would
like to have a handle on the difference X1 − X2. Our goal is to prove that for any fixed ε > 0
there is a fixed constant c > 0 such that Pr[X1 − X2 ≥ c

√
n] ≤ ε. By symmetry we can then

argue that Pr[|X1 − X2| ≥ c
√
n] ≤ 2ε.

The below explores this random process through two different bounding methods in order to
compare these methods.

(a) Compute the variance of X1. Then use Chebyshev’s inequality to show that Pr[|X1−n| ≥
c
√
n] ≤ ε for suitable choice of c for a given ε. What is the dependence of c on ε?

(b) Use the Chernoff bound to show that Pr[|X1 − n| ≥ c
√
n] ≤ ε. You need to use the

bound separately for computing Pr[X1 ≥ n+ c
√
n] and for Pr[X1 ≤ n− c

√
n]. What is

the dependence of c on ε?

(c) Using the preceding show that Pr[X1 − X2 ≥ c
√
n] ≤ ε.

(d) (optional, not for submission) A one-dimensional random walk on the integer line starts
at position 0 on the number line. In each step we move from the current position one unit
step to the left or one unit step to the right with equal probability (independent of the

1

previous choices). Let Zn be the position of the walk after n steps (it is an integer in the
range [−n, n]). Using a simple connection to the problem of throwing balls into two bins
show that for any fixed ε, there is a c that depends only on ε such that Pr[|Zn| ≥ c

√
n] ≤ ε.

Also derive that E[|Zn|] ≤ O(
√
n).

3. Consider the following geometric problem: given a set P of n points in two-dimensions, with
integer coordinates from {0, 1, . . . , U − 1}, find a closest pair — two points p 6= q ∈ P such
that the (euclidean) distance between p and q is the smallest. We denote the distance of the
closest pair by δ(P).

An O(n2)-time algorithm for this problem is trivial, and you can find an O(n log n)-time
divide-and-conquer algorithm for two-dimensions in some textbooks. In this question, we
give a different, faster randomized algorithm (which has the added advantage that it can be
extended to higher dimensions and to other problems).

(a) First give an O(n)-expected-time (Las Vegas) algorithm for the easier decision problem:
given a value r, decide whether δ(P) < r.

Hint: Build a uniform grid where each cell is an r
2 ×

r
2 square. Use hashing. How many

points can a grid cell have? For each grid cell, how many grid cells are of distance at
most r?

(b) Now, consider the following recursive Las Vegas algorithm to compute δ(P):

closest-pair(P):
if |P | ≤ 100 then return answer by brute force

partition P into subsets P1, . . . , P20 each with at most dn/20e points

S = {(i, j) | 1 ≤ i < j ≤ 20}
r =∞
for (i, j) ∈ S in random order

if δ(Pi ∪ Pj) < r
r =closest-pair(Pi ∪ Pj)

return r

Explain why the algorithm is always correct, and analyze its expected running time by
solving a recurrence.

Hint: Where is the first part used? What is the size of S? How many times (in
expectation) does the function recursively call itself?

4. (optional, not for submission) Consider the following variant of quicksort. Given an array
A of n numbers (which we assume are distinct for simplicity) the algorithm picks a pivot x
uniformly at random from A and computes the rank of x. If the rank of x is between n/4 and
3n/4 (call such a pivot a good pivot) it behaves like the normal quicksort in partitioning the
array A and recursing on both sides. If the rank of x does not satisfy the desired property
(the pivot picked is not good) the algorithm simply repeats the process of picking the pivot
until it finds a good one. Note that in principle the algorithm may never terminate!

(a) Write a formal description of the algorithm.

(b) Prove that the expected run time of this algorithm is O(n log n) on an array of n numbers.

(c) Prove that the algorithm terminates in O(n log n) time with high probability. Does this
immediately imply that the expected run time is O(n log n)?

2

