cs473: Algorithms

Problem Set #5

Prof. Michael A. Forbes
Prof. Chandra Chekuri

Assigned: Tue., Oct. 8, 2019

Due: Wed., Oct. 16, 2019 (10:00am)

All (non-optional) problems are of equal value.

1. In lecture we saw a fingerprinting scheme to check whether two n-bit strings are equal which succeeds with probability $\geq 1 - \epsilon$ and requires only $O(\log n/\epsilon)$ bits of communication. Suppose $x \neq y$ and two parties Alice (who has x) and Bob (who has y) want to find an index i such that $x_i \neq y_i$. Describe a Monte Carlo adaptive communication scheme that the two parties can use to find such an index, that succeeds with probability $\geq 1 - \epsilon$ and always uses at most $O(\log n \cdot \log n/\epsilon)$ bits of communication.

Hint: Use binary search. How does the probability of error accumulate as the scheme progresses?

2. In this problem, we will investigate a simpler family of hash functions that satisfies a weaker version of universality (with some extra logarithmic factors), but has other nicer properties useful for certain applications.

Let m be a given integer. Let p_1, \ldots, p_k be the list of all prime numbers at most m. You may assume that this list has been precomputed and you may use the known fact that $k = \Theta(\frac{m}{\log m})$ (obtaining really tight bounds for k is the subject of the well-known "Prime Number Theorem").

Pick a random index $j \in \{1, ..., k\}$ and define $h_j : \{0, 1, ..., U - 1\} \rightarrow \{0, 1, ..., m - 1\}$ by

$$h_j(x) = x \bmod p_j .$$

(a) For any fixed $x, y \in \{0, 1, ..., U - 1\}$ with $x \neq y$, prove that $\Pr_j[h_j(x) = h_j(y)] \leq O(\frac{\log m \cdot \log U}{m})$.

Hint: can you upper-bound the number of distinct prime divisors that a number may have?

(b) 3SUM is a well-known and important theoretical problem: given three sets of integers A, B, and C with |A| + |B| + |C| = n, we want to decide whether there exist elements $a \in A$, $b \in B$, and $c \in C$ such that c = a + b. One can solve this problem in slightly faster than $O(n^2)$ time but it is a major open problem whether there is an algorithm that runs in $O(n^{2-\delta})$ time for any fixed $\delta > 0$.

Prof. X claims to have discovered an $O(n^{1.99})$ -time algorithm to solve the special case of the problem when $A, B, C \subseteq \{0, 1, ..., n^4\}$. Show how to use Prof. X's algorithm to solve the more general case of the problem when $A, B, C \subseteq \{0, 1, ..., n^{100}\}$ by a Monte Carlo $O(n^{1.99})$ -time algorithm with error probability $\leq 1/4$.

Hint: Use part (a). The property that $h_j(a) + h_j(b)$ is equal to $h_j(a+b)$ or $h_j(a+b) + p_j$ may be helpful.

3. In lecture we discussed the Karp-Rabin randomized algorithm for pattern matching. The power of randomization is seen by considering the *two-dimensional* pattern matching problem.

The input consists of a $n \times n$ binary matrix T and a $m \times m$ binary matrix P. Our goal is to check if P occurs as a (contiguous) submatrix of T. Describe an algorithm that runs in $O(n^2)$ time assuming that arithmetic operation in $O(\log n)$ -bit integers can be performed in constant time. This can be done via a modification of the Karp-Rabin algorithm. To achieve this, you will have to apply some ingenuity in figuring out how to update the fingerprint in only constant time for most positions in the array.

Hint: We can view an $m \times m$ matrix as an m^2 -bit integer. Rather than computing its fingerprint directly, compute instead a fingerprint for each row first, and maintain these fingerprints as you move around.