cs473: Algorithms Assigned: Tue., Oct. 8, 2019

Problem Set #b5

Prof. Michael A. Forbes

Prof. Chandrs Chelcuri Due: Wed., Oct. 16, 2019 (10:00am)

All (non-optional) problems are of equal value.

1. In lecture we saw a fingerprinting scheme to check whether two n-bit strings are equal which
succeeds with probability > 1 — € and requires only O(log /) bits of communication. Suppose
x # y and two parties Alice (who has z) and Bob (who has y) want to find an index 7 such
that x; # y;. Describe a Monte Carlo adaptive communication scheme that the two parties
can use to find such an index, that succeeds with probability > 1 — € and always uses at most
O(logn - log n/e) bits of communication.

Hint: Use binary search. How does the probability of error accumulate as the scheme
progresses?

2. In this problem, we will investigate a simpler family of hash functions that satisfies a weaker
version of universality (with some extra logarithmic factors), but has other nicer properties
useful for certain applications.

Let m be a given integer. Let p1,...,pr be the list of all prime numbers at most m. You
may assume that this list has been precomputed and you may use the known fact that
k= @(1 Og”m) (obtaining really tight bounds for k is the subject of the well-known “Prime
Number Theorem”).

Pick a random index j € {1,...,k} and define h; : {0,1,...,U —1} = {0,1,...,m — 1} by

hj(x) = z mod p; .

(a) For any fixed z,y € {0,1,...,U — 1} with = # y, prove that Prj[h;(z) = h;(y)] <
O(logm-logU)‘

m
Hint: can you upper-bound the number of distinct prime divisors that a number may
have?

(b) 3SUM is a well-known and important theoretical problem: given three sets of integers
A, B, and C with |A| + |B| + |C| = n, we want to decide whether there exist elements
a€ A, be B, and ¢ € C such that ¢ = a + b. One can solve this problem in slightly
faster than O(n?) time but it is a major open problem whether there is an algorithm
that runs in O(n?~%) time for any fixed § > 0.

Prof. X claims to have discovered an O(n'%?)-time algorithm to solve the special case
of the problem when A, B,C C {0,1,...,n%}. Show how to use Prof. X’s algorithm to
solve the more general case of the problem when A, B,C C {0,1,...,n'%} by a Monte
Carlo O(n!%?)-time algorithm with error probability < 1/4.

Hint: Use part (a). The property that hj(a)+ h;(b) is equal to hj(a+b) or hj(a+b)+p;
may be helpful.

3. In lecture we discussed the Karp-Rabin randomized algorithm for pattern matching. The
power of randomization is seen by considering the two-dimensional pattern matching problem.

The input consists of a n X n binary matrix 7" and a m X m binary matrix P. Our goal is
to check if P occurs as a (contiguous) submatrix of 7. Describe an algorithm that runs in
O(n?) time assuming that arithmetic operation in O(logn)-bit integers can be performed in
constant time. This can be done via a modification of the Karp-Rabin algorithm. To achieve
this, you will have to apply some ingenuity in figuring out how to update the fingerprint in
only constant time for most positions in the array.

Hint: We can view an m X m matrix as an m?2-bit integer. Rather than computing its
fingerprint directly, compute instead a fingerprint for each row first, and maintain these
fingerprints as you move around.

