
cs473: Algorithms Assigned: Wed., Oct. 23, 2019

Problem Set #7

Prof. Michael A. Forbes
Prof. Chandra Chekuri

Due: Wed., Oct. 30, 2019 (10:00am)

For problems that use maximum flows as a black box, a full-credit solution requires the following.

• A complete description of the relevant flow network, specifying the set of vertices, the set of
edges (being careful about direction), the source and target vertices s and t, and the capacity
of every edge. (If the flow network is part of the original input, just say that.)

• A description of the algorithm to construct this flow network from the stated input. This
could be as simple as “we can construct the flow network in O(n3) time by brute force.”

• A description of the algorithm to extract the answer to the stated problem from the maximum
flow. This could be as simple as “return True if the maximum flow value is at least 42 and
False otherwise.”

• A proof that your reduction is correct. This proof will almost always have two components. For
example, if your algorithm returns a boolean value, you should prove that its True answers
are correct and that its False answers are correct. If your algorithm returns a number, you
should prove that number is neither too large nor too small.

• The running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in your flow network.

• You may assume that maximum flows can be computed in O(V E) time. Do not regurgitate
the maximum flow algorithm itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-
disjoint paths, maximum bipartite matching, minimum-cost max-flows) or to other standard
graph problems (for example: reachability, minimum spanning tree, shortest paths) have similar
requirements.

All (non-optional) problems are of equal value.

1. The maxflow-mincut theorem and its specializations (e.g., Hall’s Theorem, Menger’s Theorem)
can translate questions between the language of flows to the language of cuts, and vice versa.
This can facilitate proving useful and interesting facts that would otherwise be difficult to
show directly. Prove the following.

(a) Let G = (V,E) be a directed graph and let u, v, w be distinct vertices. Suppose there are
k edge-disjoint paths from u to v in G, and k edge-disjoint paths from v to w in G. Note
that the paths from u to v can share edges with the paths from v to w. Prove that there
are k edge-disjoint paths from u to w in G.

1



(b) Suppose G is a connected simple undirected graph. A vertex v is a cut-vertex if G− v
has at least two distinct connected components. If G has no cut-vertices we say it is
a block or 2-node-connected. If G has exactly two vertices then it is an edge and is a
block. Blocks are more interesting when there are at least 3 vertices. Prove that in a
block with at least 3 vertices, that for every two vertices u, v there is a (simple) cycle
Cu,v containing both u and v.

Note: One can prove the stronger result that every two edges e1 and e2 are in such a
(simple) cycle.

(c) (optional, not for submission) Suppose G is an Eulerian directed graph, that is, a graph
where the in-degree of each vertex is the same as the out-degree of each vertex. Prove
that if there are k edge-disjoint paths from u to v then there are k edge-disjoint paths
from v to u.

2. The computer science department at UIUC has n professors. They handle departmental duties
by taking part in various committees. There are m committees and the j-th committee requires
at least kj professors. The head of the department asked each professor to volunteer for a set of
committees. Let Si ⊆ {1, 2, . . . ,m} be the set of committees that professor i has volunteered
for. A committee assignment consists of sets S′

1, S
′
2, . . . , S

′
n where S′

i ⊆ {1, 2, . . . ,m} is the
set of committees that professor i will participate in. A valid committee assignment has to
satisfy two constraints: (i) for each professor i, S′

i ⊆ Si, that is, each professor is only given
committees that they have volunteered for, and (ii) each committee j has at least kj professors
assigned to it, that is, j occurs in at least kj of the sets S′

1, S
′
2, . . . , S

′
n.

(a) (optional, not for submission) Describe a polynomial time algorithm that the head
of the department can employ to check if there is a valid committee assignment given
m, the requirements for the committees k1, k2, . . . , km, and the lists S1, S2, . . . , Sn. The
algorithm should output a valid assignment if there is one.

(b) The head of the department notices that often there is no valid committee assignment
because professors naturally are inclined to volunteer for as few committees as possible.
To overcome this, the definition of a valid assignment is relaxed as follows. Let ` be
some integer. An assignment S′

1, S
′
2, . . . , S

′
n is now said to be valid if (i) |S′

i \ Si| ≤ ` and
(ii) each committee j has at least kj professors assigned to it. The new condition (i)
means that a professor i may be assigned up to ` committees not on the list Si that they
volunteered for. Describe an algorithm to check if there is a valid committee assignment
with the relaxed definition.

3. Let G = (V,E) be a directed graph and let C = {C1, C2, . . . , Ck} be a collection of cycles in
G. We say that C is a cycle cover of G if each vertex of V is in exactly one of the cycles. In
other words the cycles of C are vertex disjoint and together contain all vertices. Describe an
algorithm that given G decides whether G contains a cycle cover. Follow the two steps below.

(a) Argue that a set of edges E′ ⊆ E forms a cycle cover if and only if each vertex v has
exactly one incoming edge and one outgoing edge in E′.

(b) Use bipartite matching to check if there is an E′ ⊆ E satisfying the property in the
previous part.

2


