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Outline

Discrete Fourier Transfor (DFT) and Fast Fourier Transform (FFT)
have many applications and are connected to important mathematics.

“One of top 10 Algorithms of 20th Century” according to IEEE.
Gilbert Strang: “The most important numerical algorithm of our
lifetime”.

Our goal:

Multiplication of two degree n polynomials in O(n log n) time.
Surprising and non-obvious.

Algorithmic ideas

change in representation
mathematical properties of polynomials
divide and conquer
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Part I

Polynomials, Convolutions and FFT
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Polynomials

Definition
A polynomial is a function of one variable built from additions,
subtractions and multiplications (but no divisions).

p(x) =
n−1∑
j=0

ajx j

The numbers a0, a1, . . . , an are the coefficients of the polynomial.
The degree is the highest power of x with a non-zero coefficient.

Example

p(x) = 3− 4x + 5x3

a0 = 3, a1 = −4, a2 = 0, a3 = 5 and deg(p) = 3
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Coefficient Representation

Polynomials represented by vector a = (a0, a1, . . . an−1) of
coefficients.
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Operations on Polynomials

Evaluate Given a polynomial p and a value α, compute p(α)

Add Given (representations of) polynomials p, q, compute
(reprsentation of) polynomial p + q

Multiply Given (representation of) polynomials p, q, compute
(representation of) polynomial p · q.

Roots Given p find all roots of p.
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Evaluation

Compute value of polynomial a = (a0, a1, . . . an−1) at α

power = 1
value = 0
for j = 0 to n − 1

// invariant: power = αj

value = value + aj · power
power = power · α

end for

return value

How many additions?

n
How many multiplications? 2n
Horner’s rule can be used to cut the multiplications in half

a(x) = a0 + x(a1 + x(a2 + x(· · ·+ xan−1) · · · ))
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Evaluation: Numerical Issues

Question
How long does evaluation really take? O(n) time?

Bits to represent αn is n logα while bits to represent α is only
logα. Thus, need to pay attention to size of numbers and
multiplication complexity.

Ignore this issue for now. Can get around it for applications of
interest where one typically wants to compute p(α) mod m for
some number m.
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Addition

Compute the sum of polynomials
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

a + b = (a0 + b0, a1 + b1, . . . an−1 + bn−1). Takes O(n) time.
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Multiplication

Compute the product of polynomials
a = (a0, a1, . . . an) and b = (b0, b1, . . . bm)
Recall a · b = (c0, c1, . . . cn+m) where

ck =
∑

i ,j : i+j=k

ai · bj

Takes Θ(nm) time; Θ(n2) when n = m.

We will obtain a better algorithm!

Better/Efficient/Easy (today’s lecture): preferably O(n + m), but
O(n log n) is also okay.
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Convolutions

Definition
The convolution of vectors a = (a0, a1, . . . an) and
b = (b0, b1, . . . bm) is the vector c = (c0, c1, . . . cn+m) where

ck =
∑

i ,j : i+j=k

ai · bj

Convolution of vectors a and b is denoted by a ∗ b. In other words,
the convolution is the coefficients of the product of the two
polynomials.
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Revisiting Polynomial Representations

Representation

Polynomials represented by vector a = (a0, a1, . . . an−1) of
coefficients.

Question
Are there other useful ways to represent polynomials?
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Representing Polynomials by Roots

Root of a polynomial p(x): r such that p(r) = 0. If
r1, r2, . . . , rn−1 are roots then
p(x) = an−1(x − r1)(x − r2) . . . (x − rn−1).

Valid representation because of:

Theorem (Fundamental Theorem of Algebra)

Every polynomial p(x) of degree d has exactly d roots r1, r2, . . . , rd
where the roots can be complex numbers and can be repeated.
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Representing Polynomials by Roots

Representation
Polynomials represented by vector scale factor an−1 and roots
r1, r2, . . . , rn−1.

Evaluating p at a given x is easy. Why?

Multiplication: given p, q with roots r1, . . . , rn−1 and
s1, . . . , sm−1 the product p · q has roots
r1, . . . , rn−1, s1, . . . , sm−1. Easy! O(n + m) time.

Addition: requires Ω(nm) time?

Given coefficient representation, how do we go to root
representation? No finite algorithm because of potential for
irrational roots.
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Representing Polynomials by Samples

Let p be a polynomial of degree n − 1.
Pick n distinct samples x0, x1, x2, . . . , xn−1

Let y0 = p(x0), y1 = p(x1), . . . , yn−1 = p(xn−1).

Representation

Polynomials represented by (x0, y0), (x1, y1), . . . , (xn−1, yn−1).

Is the above a valid representation? Why do we use 2n numbers
instead of n numbers for coefficient and root representation?
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Sample Representation

Theorem
Given a list {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} there is exactly
one polynomial p of degree n − 1 such that p(xj) = yj for
j = 0, 1, . . . , n − 1.

So representation is valid.
Can use same x0, x1, . . . , xn−1 for all polynomials of degree n − 1.
No need to store them explicitly and hence need only n numbers
y0, y1, . . . , yn−1.
(
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Lagrange Interpolation

Given (x0, y0), . . . , (xn−1, yn−1) the following polynomial p satisfies
the property that p(xj) = yj for j = 0, 1, 2, . . . , n − 1.

p(x) =
n−1∑
j=0

 yj∏
k 6=j(xj − xk)

∏
k 6=j

(x − xk)



For n = 3, p(x) =

y0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)

Easy to verify that p(xj) = yj ! Thus there exists one polynomial of
degree n− 1 that interpolates the values (x0, y0), . . . , (xn−1, yn−1).
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Lagrange Interpolation

Given (x0, y0), . . . , (xn−1, yn−1) there is a polynomial p(x) such
that p(xi) = yi for 0 ≤ i < n. Can there be two distinct
polynomials?

No! Use Fundamental Theorem of Algebra to prove it — exercise.
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Addition and Multiplication with Sample

Representation

Let a = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} and
b = {(x0, y ′0), (x1, y ′1), . . . (xn−1, y ′n−1)} be two polynomials
of degree n − 1 in sample representation.

a + b can be represented by
{(x0, (y0 + y ′0)), (x1, (y1 + y ′1)), . . . (xn−1, (yn−1 + y ′n−1))}

Thus, can be computed in O(n) time

a · b can be evaluated at n samples
{(x0, (y0 · y ′0)), (x1, (y1 · y ′1)), . . . (xn−1, (yn−1 · y ′n−1))}

Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires
p, q to be in coefficient form.
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Recall

Goal: given polynomials a = (a0, . . . , an−1) and
b = (b0, . . . , bn−1) in coefficient representation, compute a · b in
coefficient form (convolution).

Sample representation:

Fix x0, . . . , xn−1.

a′ = (x0, a(x0)), . . . , (xn−1, a(xn−1)), similarly b′ from b.

Theorem. Unique degree (n − 1) polynomial corresponding to
any given n samples. a′ is a valid representation of a.

a′ · b′ requires O(n) multiplications.

Plan. Convert to sample representation. Multiply. Convert back to
coefficient representation.
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Coefficient representation to Sample representation

Given a polynomial a as (a0, a1, . . . , an−1) can we obtain a sample
representation (x0, y0), . . . , (xn−1, yn−1) quickly? Also can we
invert the representation quickly?

Suppose we choose x0, x1, . . . , xn−1 arbitrarily.

Take O(n) time to evaluate yj = a(xj) given (a0, . . . , an−1).

Total time is Ω(n2)

Inversion via Lagrange interpolation also Ω(n2)
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Key Idea

Can choose x0, x1, . . . , xn−1 carefully!

Total time to evaluate a(x0), a(x1), . . . , a(xn−1) should be better
than evaluating each separately.

How do we choose x0, x1, . . . , xn−1 to save work?
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A Simple Start

a(x) = a0 + a1x + a2x2 + a3x3 + . . . + an−1xn−1

Assume n is a power of 2 for rest of the discussion.

Observation: (−x)2j = x2j . Can we exploit this?

Example

3+4x+6x2+2x3+x4+10x5 = (3+6x2+x4)+x(4+2x2+10x4)

a(c) = (3 + 6c2 + c4) + c(4 + 2c2 + 10c4)
a(−c) = (3 + 6c2 + c4)− c(4 + 2c2 + 10c4)
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Odd and Even Decomposition

Let a = (a0, a1, . . . an−1) be a polynomial.

Let aodd = (a1, a3, a5, . . .) be the (n/2− 1) degree
polynomial defined by the odd coefficients; so

aodd(x) = a1 + a3x + a5x2 + · · ·

Similarly, let aeven(x) = a0 + a2x + . . . be the (n/2− 1)
degree polynomial defined by the even coefficients.

Observe
a(x) = aeven(x2) + xaodd(x2)

Thus, evaluating a at x can be reduced to evaluating lower
degree polynomials plus constantly many arithmetic operations.

Ruta (UIUC) CS473 24 Spring 2018 24 / 55
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Exploiting Odd-Even Decomposition

a(x) = aeven(x2) + xaodd(x2)

Choose n samples
x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Evaluate aeven and aodd at x2
0 , x

2
1 , x

2
2 , . . . , x

2
n/2−1.

For each i = 0 to (n/2− 1), evaluate
a(xi) = aeven(x2

i ) + xiaodd(x2
i )

a(−xi) = aeven(x2
i )− xiaodd(x2

i )
Total of O(n) work!

Suppose we can make this work recursively. Then

T (n) = 2T (n/2) + O(n) which implies T (n) = O(n log n)
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Collapsible sets

Definition
Given a set X of numbers square(X ) (for square of X ) is the set
{x2 | x ∈ X}.

Definition
A set X of n numbers is collapsible if square(X ) ⊂ X and
|square(X )| = n/2.

Definition
A set X of n numbers (for n a power of 2) is recursively collapsible if
n = 1 or if X is collapsible and square(X ) is recursively collapsible.
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Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X ) in O(n) time %note:|square(X )| = n/2

{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X ), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X ), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i ) + xiaodd (x2

i )

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55



Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X ) in O(n) time %note:|square(X )| = n/2
{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X ), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X ), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i ) + xiaodd (x2

i )

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55



Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X ) in O(n) time %note:|square(X )| = n/2
{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X ), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X ), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i ) + xiaodd (x2

i )

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55

ruta2
Pencil

ruta2
Pencil



Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X ) in O(n) time %note:|square(X )| = n/2
{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X ), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X ), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i ) + xiaodd (x2

i )

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55



Are there collapsible sets?

n samples x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Next step in recursion x2
0 , x

2
1 , . . . , x

2
n/2−1

To continue recursion, we need

{x2
0 , x

2
1 , . . . , x

2
n
2
−1} = {z0, z1, . . . , z n

4
−1,−z0,−z1, . . . ,−z n

4
−1}

If z0 = x2
0 and −z0 = x2

n/4 then x0 =
√
−1xn/4 That is

x0 = ixn/4 where i is the imaginary number.

Can continue recursion but need to go to complex numbers.
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Complex Numbers

Notation

For the rest of lecture, i stands for
√
−1

Definition
Complex numbers are points lying in the complex plane represented as

Cartesian a + ib =
√

a2 + b2e(arctan(b/a))i

Polar reθi = r(cos θ + i sin θ)

Thus, eπi = −1 and e2πi = 1.
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Power Series for Functions (Recall)

What is ez when z is a real number? When z is a complex number?

ez = 1 + z/1! + z2/2! + . . . + z j/j! + . . .

Therefore

e iθ = 1 + iθ/1! + (iθ)2/2! + (iθ)3/3! + . . .

= (1− θ2/2! + θ4/4!− . . .+) + i(θ − θ3/3! + . . .+)

= cos θ + i sin θ
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Complex Roots of Unity

What are the roots of the polynomial xk − 1? (e2πi = 1)

Clearly 1 is a root.

Suppose reθi is a root then r kekθi = 1 which implies that
r = 1 and kθ = 2π ⇒ θ = 2π/k

Let ωk = e2πi/k . The roots are 1 = ω0
k , ω

2
k , . . . , ω

k−1
k where

ωj
k = e2πji/k .

Proposition

Let ωk be e2πi/k . The equation xk = 1 has k distinct complex roots
given by ωj

k = e(2πj)i/k for j = 0, 1, . . . k − 1

Proof.

(ωj
k)k = (e2πji/k)k = e2πji = (e2πi)j = (1)j = 1
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Roots of unity form a collapsible set

Observation 1: ωj
k = ωj mod k

k

Lemma
Assume n is a power of 2. The n’th roots of unity are a recursively
collapsible set.

Proof.

Let Xn = {1, ωn, ω
2
n, . . . , ω

n−1
n }. (ωn/2+j

n )2 = ωn+2j
n = ω2j

n , for
each j < n/2.

X1 = {1}, X2 = {1,−1}
X4 = {1,−1, i ,−i}
X8 = {1,−1, i ,−i , 1√

2
(±1± i)}

Ruta (UIUC) CS473 32 Spring 2018 32 / 55
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Observation 1: ωj
k = ωj mod k

k

Lemma
Assume n is a power of 2. The n’th roots of unity are a recursively
collapsible set.

Proof.
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2
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Discrete Fourier Transform

Definition
Given vector a = (a0, a1, . . . , an−1) the Discrete Fourier Transform
(DFT) of a is the vector a′ = (a′0, a

′
1, . . . , a

′
n−1) where a′j = a(ωj

n)
for 0 ≤ j < n.

a′ is a sample representation of polynomial with coefficient
reprentation a at n’th roots of unity.

We have shown that a′ can be computed from a in O(n log n) time.
This divide and conquer algorithm is called the Fast Fourier
Transform (FFT).
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Back to Convolutions and Polynomial

Multiplication

Convolutions (products)

Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Evaluate a and b at some n sample points.

2 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1).

3 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Can we really compute c from c ′? We only have n sample points
and c ′ has 2n − 1 coefficients!
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Convolutions and Polynomial Multiplication

Convolutions
Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Pad a with n zeroes to make it a (2n − 1) degree polynomial
a = (a0, a1, . . . , an−1, an, an+1, . . . , a2n−1). Similarly for b.

2 Compute values of a and b at the 2nth roots of unity.

3 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1, . . . , a

′
2n−1b

′
2n−1).

4 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Step 2 takes O(n log n) using divide and conquer algorithm

Step 3 takes O(n) time

Step 4?
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Part II

Inverse Fourier Transform
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Inverse Fourier Transform

Input Given the evaluation of a n − 1-degree polynomial a on
the nth roots of unity specified by vector a′

Goal Compute the coefficients of a

We saw that a′ can be computed from a in O(n log n) time. Can
we compute a from a′ in O(n log n) time?
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A Matrix Point of View

a(x) = a0 + a1x + · · ·+ an−1xn−1

a′0 = a(x0), a′1 = a(x1), . . . , a′n−1 = a(xn−1).

1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xj x2
j . . . xn−1

j
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1





a0

a1
...
aj
...

an−1


=



a′0
a′1
...
a′j
...

a′n−1


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A Matrix Point of View

a(x) = a0 + a1x + · · ·+ an−1xn−1

Denote ω = ω1
n = e2π/n. Let xj = ωj

a′0 = a(1), a′1 = a(ω), . . . , a′n−1 = a(ωn−1).



1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωj ω2j . . . ωj(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)





a0

a1
...
aj
...

an−1


=



a′0
a′1
...
a′j
...

a′n−1


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Inverting the Matrix



a0

a1
...
aj
...

an−1


=



1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωj ω2j . . . ωj(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



−1 

a′0
a′1
...
a′j
...

a′n−1


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Inverting the Matrix



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ωj ω2j . . . ωj(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



−1

=
1

n



1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ω−j ω−2j . . . ω−j(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)(n−1)



Replace ω by ω−1 which is also a root of unity!
Since ωj = ωj mod n, we get ω−j = e−j2π/n = ω(n−j)2π/n.

Inverse matrix is simply a permutation of the original matrix modulo
scale factor 1/n.
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Why does it work?

Check VV−1 = I where I is the n × n identity matrix.

Observation:
∑n−1

s=0 (ωj )s = (1 +ωj +ω2j + . . .+ω(n−1)j ) = 0, j 6= 0

ωj is root of xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + 1)

Thus, ωj is root of (xn−1 + xn−2 + . . . + 1)

(1, ωj , ω2j , . . . , ωj(n−1))·(1, ω−k , ω−2k , . . . , ω−k(n−1)) =
n−1∑
s=0

ωs(j−k)

Note that ωj−k is a n’th root of unity. If j = k then sum is n,
otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of V−1) are orthogonal.
Thus a′ = Va can be thought of transforming the vector a into a
new Fourier basis with basis vectors corresponding to rows of V .
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Inverse Fourier Transform

Input Given the evaluation of a n − 1-degree polynomial a on
the nth roots of unity specified by vector a′

Goal Compute the coefficients of a

We saw that a′ can be computed from a in O(n log n) time. Can
we compute a from a′ in O(n log n) time?

Yes! a = V−1a′ which is simply a permuted and scaled version of
DFT. Hence can be computed in O(n log n) time.
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Convolutions Once More

Convolutions
Compute convolution of a = (a0, a1, . . . an−1) and
b = (b0, b1, . . . bn−1)

1 Compute values of a and b at the 2nth roots of unity

2 Compute sample representation c ′ of product c = a · b
3 Compute c from c ′ using inverse Fourier transform.

Step 1 takes O(n log n) using two FFTs

Step 2 takes O(n) time

Step 3 takes O(n log n) using one FFT
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FFT Circuit

Algorithms Lecture 3: Fast Fourier Transforms

FFT(n/2)

FFT(n/2)

P P*

U U*

V V*

bit reversal permutation butterfly network

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

The recursive structure of the FFT algorithm.

If we expand this recursive structure completely, we see that the circuit splits naturally into
two parts. The left half computes the bit-reversal permutation of the input. To find the position of
P [k] in this permutation, write k in binary, and then read the bits backward. For example, in an
8-element bit-reversal permutation, P [3] = P [0112] ends up in position 6 = 1102. The right half of
the FFT circuit is a butterfly network. Butterfly networks are often used to route between processors
in massively-parallel computers, since they allow any processor to communicate with any other in
only O(log n) steps.

Caveat Lector! This presentation is appropriate for graduate students or undergrads with
strong math backgrounds, but it leaves most undergrads confused. You may find it less
confusing to approach the material in the opposite order, as follows:

First, any polynomial can be split into even-degree and odd-degree parts:

p(x) = peven(x2) + x · podd(x2).

We can evaluate p(x) by recursively evaluating peven(x2) and podd(x2) and doing O(1)
arithmetic operations.

Now suppose our task is to evaluate the degree-n polynomial p(x) at n different points x,
as quickly as possible. To exploit the even/odd recursive structure, we must choose the n
evaluation points carefully. Call a set X of n values delicious if either (1) X has only one
element, or (2) the set X2 = {x2 | x ∈ X} has only n/2 elements and X2 is delicious.
Clearly such a set exists only if N is a power of two. If someone magically handed us a
delicious set X, we could compute {p(x) | x ∈ X} in O(n log n) time using the even/odd
recursive structure. Bit reversal permutation, blah blah blah, butterfly network, yadda yadda
yadda.

If n is a power of two, then the set of integers {0, 1, . . . , n − 1} is delicious, provided
we perform all arithmetic modulo n. But that only tells us p(x) mod n, and we want
the actual value of p(x). Of course, we can use larger moduli: {0, k, 2k, . . . , (n − 1)k}
is delicious mod nk. We can avoid modular arithmetic entirely by using complex roots of
unity—the set {e2πi/n | i = 0, 1, . . . , n− 1} is delicious! The sequence of values p(e2πi/n)
is called the discrete Fourier transform of p.

Finally, to invert this transformation from coefficients to values, we repeat exactly the same
procedure, using the same delicious set but in the opposite order. Blardy blardy, linear
algebra, hi dee hi dee hi dee ho.

c© Copyright 2006 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License (http://creativecommons.org/licenses/by-nc-sa/2.5/)
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Numerical Issues

As noted earlier evaluating a polynomial p at a point x makes
numbers big

Are we cheating when we say O(n log n) algorithm for
convolution?

Can get around numerical issues — work in finite fields and
avoid numbers growing too big.

Outside the scope of lecture

We will assume for reductions that convolution can be done in
O(n log n) time.
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Numerical Issues: Puzzle
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Part III

Application to String Matching
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Basic string matching problem:

Input Given a pattern string P on length m and a text string
T of length n over a fixed alphabet Σ

Goal Does P occur as a substring of T? Find all “matches”
of P in T .

Several generalizations. Matching with don’t cares.

Input Given a pattern string P on length m over Σ ∪ {∗} (∗
is a don’t care) and a text string T of length n over Σ

Goal Find all “matches” of P in T . ∗ matches with any
character of Σ

Example: P = a ∗ ∗, T = aardvark

Matches?
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is a don’t care) and a text string T of length n over Σ

Goal Find all “matches” of P in T . ∗ matches with any
character of Σ

Example: P = a ∗ ∗, T = aardvark

Matches?
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Shifted products via Convolution

Given two arrays A and B with say with A[0..m − 1] and
B[0..n − 1] with m ≤ n

Input Two arrays: A[0..(m − 1)] and B[0..(n − 1)].

Goal Compute all shifted products in array
C [0..(n−m− 1)] where C [i ] =

∑m−1
j=0 A[j ]B[i + j ].

Example: A = [0, 1, 1, 0], B = [0, 0, 1, 1, 1, 0, 1]
C =

Lemma
Reverse of C is the convolution of the vectors A and reverse of B.

Proof.
Exercise.
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Reduction of pattern matching to shifted products

Assume first that Σ = {0, 1}
Goal:

Convert P = a0a1 . . . am−1 to binary array A of size m.

Convert T = b0b1 . . . bn−1 to binary array B of size n.

So that we can use shifted product C of A and B to count
“mismatches”.

Type 1 mismatches: C [i ] counts # j ’s where P[j ] = 0 and
T [i + j ] = 1, when P is aligned with T at T [i ].

Example:
T = 10110010 . . .
P = 010

Finding Type 1 mismatches:
B[j ] = T [j ]
If P[j ] = 0 set A[j ] = 1, if P[j ] = 1 or ∗ set A[j ] = 0.
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Reduction of pattern matching to shifted products

Type 2 mismatches: C [i ] counts # j ’s where P[j ] = 1 and
T [i + j ] = 0, when P is aligned with T at T [i ].

Example:
T = 10110010 . . .
P = 010

Finding Type 2 mismatches:

B[j ] = (1− T [j ]) (flip the bits)
If P[j ] = 0 or ∗ set A[j ] = 0, if P[j ] = 1 set A[j ] = 1.

There is a match at position i of T iff both types of mismatches are
0.
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Running time analysis

Reducing to shift product is O(n).

Need to compute two convolutions with polynomials of size n
and m. Total run time is O(n log n) (here we assume m ≤ n).

Can reduce to O(n log m) as follows. Break text T into
O(n/m) overlapping substrings of length 2m each and compute
matches of P with these substrings. Total time is O(n log m).

Exercise: work out the details of this improvement.
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General Alphabet

If Σ is not binary replace each character α ∈ Σ by its binary
representation. Need s = dlog |Σ|e bits. Running time increases to
O(n log m log s).

Can remove dependence on s and obtain O(n log m) time where
m = |P| using more advanced ideas and/or randomization.
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Trivia

FFT algorithm is used billions of times everyday: image/sound
processing – jpeg, mp3, MRI scans, etc.

Even your brain is running FFT!

A fun video on FFT applications:
https://www.youtube.com/watch?v=aqa6vyGSdos
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