
CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

Ruta (UIUC) CS473 1 Spring 2018 1 / 55

CS 473: Algorithms, Spring 2018

Polynomials, Convolutions
and FFT
Lecture 2
Jan 16/18, 2018

Most slides are courtesy Prof. Chekuri
Ruta (UIUC) CS473 2 Spring 2018 2 / 55

Outline

Discrete Fourier Transfor (DFT) and Fast Fourier Transform (FFT)
have many applications and are connected to important mathematics.

“One of top 10 Algorithms of 20th Century” according to IEEE.
Gilbert Strang: “The most important numerical algorithm of our
lifetime”.

Our goal:

Multiplication of two degree n polynomials in O(n log n) time.
Surprising and non-obvious.

Algorithmic ideas

change in representation
mathematical properties of polynomials
divide and conquer

Ruta (UIUC) CS473 3 Spring 2018 3 / 55

Part I

Polynomials, Convolutions and FFT

Ruta (UIUC) CS473 4 Spring 2018 4 / 55

Polynomials

Definition
A polynomial is a function of one variable built from additions,
subtractions and multiplications (but no divisions).

p(x) =
n−1∑
j=0

ajx j

The numbers a0, a1, . . . , an are the coefficients of the polynomial.
The degree is the highest power of x with a non-zero coefficient.

Example

p(x) = 3− 4x + 5x3

a0 = 3, a1 = −4, a2 = 0, a3 = 5 and deg(p) = 3

Ruta (UIUC) CS473 5 Spring 2018 5 / 55

Polynomials

Definition
A polynomial is a function of one variable built from additions,
subtractions and multiplications (but no divisions).

p(x) =
n−1∑
j=0

ajx j

The numbers a0, a1, . . . , an are the coefficients of the polynomial.
The degree is the highest power of x with a non-zero coefficient.

Coefficient Representation

Polynomials represented by vector a = (a0, a1, . . . an−1) of
coefficients.

Ruta (UIUC) CS473 5 Spring 2018 5 / 55

Operations on Polynomials

Evaluate Given a polynomial p and a value α, compute p(α)

Add Given (representations of) polynomials p, q, compute
(reprsentation of) polynomial p + q

Multiply Given (representation of) polynomials p, q, compute
(representation of) polynomial p · q.

Roots Given p find all roots of p.

Ruta (UIUC) CS473 6 Spring 2018 6 / 55

Evaluation

Compute value of polynomial a = (a0, a1, . . . an−1) at α

power = 1
value = 0
for j = 0 to n − 1

// invariant: power = αj

value = value + aj · power
power = power · α

end for

return value

How many additions?

n
How many multiplications? 2n
Horner’s rule can be used to cut the multiplications in half

a(x) = a0 + x(a1 + x(a2 + x(· · ·+ xan−1) · · ·))

Ruta (UIUC) CS473 7 Spring 2018 7 / 55

Evaluation

Compute value of polynomial a = (a0, a1, . . . an−1) at α

power = 1
value = 0
for j = 0 to n − 1

// invariant: power = αj

value = value + aj · power
power = power · α

end for

return value

How many additions? n

How many multiplications? 2n
Horner’s rule can be used to cut the multiplications in half

a(x) = a0 + x(a1 + x(a2 + x(· · ·+ xan−1) · · ·))

Ruta (UIUC) CS473 7 Spring 2018 7 / 55

Evaluation

Compute value of polynomial a = (a0, a1, . . . an−1) at α

power = 1
value = 0
for j = 0 to n − 1

// invariant: power = αj

value = value + aj · power
power = power · α

end for

return value

How many additions? n
How many multiplications?

2n
Horner’s rule can be used to cut the multiplications in half

a(x) = a0 + x(a1 + x(a2 + x(· · ·+ xan−1) · · ·))

Ruta (UIUC) CS473 7 Spring 2018 7 / 55

Evaluation

Compute value of polynomial a = (a0, a1, . . . an−1) at α

power = 1
value = 0
for j = 0 to n − 1

// invariant: power = αj

value = value + aj · power
power = power · α

end for

return value

How many additions? n
How many multiplications? 2n

Horner’s rule can be used to cut the multiplications in half

a(x) = a0 + x(a1 + x(a2 + x(· · ·+ xan−1) · · ·))

Ruta (UIUC) CS473 7 Spring 2018 7 / 55

Evaluation

Compute value of polynomial a = (a0, a1, . . . an−1) at α

power = 1
value = 0
for j = 0 to n − 1

// invariant: power = αj

value = value + aj · power
power = power · α

end for

return value

How many additions? n
How many multiplications? 2n
Horner’s rule can be used to cut the multiplications in half

a(x) = a0 + x(a1 + x(a2 + x(· · ·+ xan−1) · · ·))

Ruta (UIUC) CS473 7 Spring 2018 7 / 55

Evaluation: Numerical Issues

Question
How long does evaluation really take? O(n) time?

Bits to represent αn is n logα while bits to represent α is only
logα. Thus, need to pay attention to size of numbers and
multiplication complexity.

Ignore this issue for now. Can get around it for applications of
interest where one typically wants to compute p(α) mod m for
some number m.

Ruta (UIUC) CS473 8 Spring 2018 8 / 55

Addition

Compute the sum of polynomials
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

a + b = (a0 + b0, a1 + b1, . . . an−1 + bn−1). Takes O(n) time.

Ruta (UIUC) CS473 9 Spring 2018 9 / 55

Addition

Compute the sum of polynomials
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)
a + b = (a0 + b0, a1 + b1, . . . an−1 + bn−1). Takes O(n) time.

Ruta (UIUC) CS473 9 Spring 2018 9 / 55

Multiplication

Compute the product of polynomials
a = (a0, a1, . . . an) and b = (b0, b1, . . . bm)
Recall a · b = (c0, c1, . . . cn+m) where

ck =
∑

i ,j : i+j=k

ai · bj

Takes Θ(nm) time; Θ(n2) when n = m.

We will obtain a better algorithm!

Better/Efficient/Easy (today’s lecture): preferably O(n + m), but
O(n log n) is also okay.

Ruta (UIUC) CS473 10 Spring 2018 10 / 55

Multiplication

Compute the product of polynomials
a = (a0, a1, . . . an) and b = (b0, b1, . . . bm)
Recall a · b = (c0, c1, . . . cn+m) where

ck =
∑

i ,j : i+j=k

ai · bj

Takes Θ(nm) time; Θ(n2) when n = m.
We will obtain a better algorithm!

Better/Efficient/Easy (today’s lecture): preferably O(n + m), but
O(n log n) is also okay.

Ruta (UIUC) CS473 10 Spring 2018 10 / 55

Multiplication

Compute the product of polynomials
a = (a0, a1, . . . an) and b = (b0, b1, . . . bm)
Recall a · b = (c0, c1, . . . cn+m) where

ck =
∑

i ,j : i+j=k

ai · bj

Takes Θ(nm) time; Θ(n2) when n = m.
We will obtain a better algorithm!

Better/Efficient/Easy (today’s lecture): preferably O(n + m), but
O(n log n) is also okay.

Ruta (UIUC) CS473 10 Spring 2018 10 / 55

Convolutions

Definition
The convolution of vectors a = (a0, a1, . . . an) and
b = (b0, b1, . . . bm) is the vector c = (c0, c1, . . . cn+m) where

ck =
∑

i ,j : i+j=k

ai · bj

Convolution of vectors a and b is denoted by a ∗ b. In other words,
the convolution is the coefficients of the product of the two
polynomials.

Ruta (UIUC) CS473 11 Spring 2018 11 / 55

Revisiting Polynomial Representations

Representation

Polynomials represented by vector a = (a0, a1, . . . an−1) of
coefficients.

Question
Are there other useful ways to represent polynomials?

Ruta (UIUC) CS473 12 Spring 2018 12 / 55

Revisiting Polynomial Representations

Representation

Polynomials represented by vector a = (a0, a1, . . . an−1) of
coefficients.

Question
Are there other useful ways to represent polynomials?

Ruta (UIUC) CS473 12 Spring 2018 12 / 55

Representing Polynomials by Roots

Root of a polynomial p(x): r such that p(r) = 0. If
r1, r2, . . . , rn−1 are roots then
p(x) = an−1(x − r1)(x − r2) . . . (x − rn−1).

Valid representation because of:

Theorem (Fundamental Theorem of Algebra)

Every polynomial p(x) of degree d has exactly d roots r1, r2, . . . , rd
where the roots can be complex numbers and can be repeated.

Ruta (UIUC) CS473 13 Spring 2018 13 / 55

Representing Polynomials by Roots

Representation
Polynomials represented by vector scale factor an−1 and roots
r1, r2, . . . , rn−1.

Evaluating p at a given x is easy. Why?

Multiplication: given p, q with roots r1, . . . , rn−1 and
s1, . . . , sm−1 the product p · q has roots
r1, . . . , rn−1, s1, . . . , sm−1. Easy! O(n + m) time.

Addition: requires Ω(nm) time?

Given coefficient representation, how do we go to root
representation? No finite algorithm because of potential for
irrational roots.

Ruta (UIUC) CS473 14 Spring 2018 14 / 55

Representing Polynomials by Roots

Representation
Polynomials represented by vector scale factor an−1 and roots
r1, r2, . . . , rn−1.

Evaluating p at a given x is easy. Why?

Multiplication: given p, q with roots r1, . . . , rn−1 and
s1, . . . , sm−1 the product p · q has roots
r1, . . . , rn−1, s1, . . . , sm−1. Easy! O(n + m) time.

Addition: requires Ω(nm) time?

Given coefficient representation, how do we go to root
representation? No finite algorithm because of potential for
irrational roots.

Ruta (UIUC) CS473 14 Spring 2018 14 / 55

Representing Polynomials by Roots

Representation
Polynomials represented by vector scale factor an−1 and roots
r1, r2, . . . , rn−1.

Evaluating p at a given x is easy. Why?

Multiplication: given p, q with roots r1, . . . , rn−1 and
s1, . . . , sm−1 the product p · q has roots
r1, . . . , rn−1, s1, . . . , sm−1. Easy! O(n + m) time.

Addition: requires Ω(nm) time?

Given coefficient representation, how do we go to root
representation? No finite algorithm because of potential for
irrational roots.

Ruta (UIUC) CS473 14 Spring 2018 14 / 55

Representing Polynomials by Roots

Representation
Polynomials represented by vector scale factor an−1 and roots
r1, r2, . . . , rn−1.

Evaluating p at a given x is easy. Why?

Multiplication: given p, q with roots r1, . . . , rn−1 and
s1, . . . , sm−1 the product p · q has roots
r1, . . . , rn−1, s1, . . . , sm−1. Easy! O(n + m) time.

Addition: requires Ω(nm) time?

Given coefficient representation, how do we go to root
representation? No finite algorithm because of potential for
irrational roots.

Ruta (UIUC) CS473 14 Spring 2018 14 / 55

Representing Polynomials by Roots

Representation
Polynomials represented by vector scale factor an−1 and roots
r1, r2, . . . , rn−1.

Evaluating p at a given x is easy. Why?

Multiplication: given p, q with roots r1, . . . , rn−1 and
s1, . . . , sm−1 the product p · q has roots
r1, . . . , rn−1, s1, . . . , sm−1. Easy! O(n + m) time.

Addition: requires Ω(nm) time?

Given coefficient representation, how do we go to root
representation? No finite algorithm because of potential for
irrational roots.

Ruta (UIUC) CS473 14 Spring 2018 14 / 55

Representing Polynomials by Samples

Let p be a polynomial of degree n − 1.
Pick n distinct samples x0, x1, x2, . . . , xn−1

Let y0 = p(x0), y1 = p(x1), . . . , yn−1 = p(xn−1).

Representation

Polynomials represented by (x0, y0), (x1, y1), . . . , (xn−1, yn−1).

Is the above a valid representation? Why do we use 2n numbers
instead of n numbers for coefficient and root representation?

Ruta (UIUC) CS473 15 Spring 2018 15 / 55

Representing Polynomials by Samples

Let p be a polynomial of degree n − 1.
Pick n distinct samples x0, x1, x2, . . . , xn−1

Let y0 = p(x0), y1 = p(x1), . . . , yn−1 = p(xn−1).

Representation

Polynomials represented by (x0, y0), (x1, y1), . . . , (xn−1, yn−1).

Is the above a valid representation?

Why do we use 2n numbers
instead of n numbers for coefficient and root representation?

Ruta (UIUC) CS473 15 Spring 2018 15 / 55

Representing Polynomials by Samples

Let p be a polynomial of degree n − 1.
Pick n distinct samples x0, x1, x2, . . . , xn−1

Let y0 = p(x0), y1 = p(x1), . . . , yn−1 = p(xn−1).

Representation

Polynomials represented by (x0, y0), (x1, y1), . . . , (xn−1, yn−1).

Is the above a valid representation? Why do we use 2n numbers
instead of n numbers for coefficient and root representation?

Ruta (UIUC) CS473 15 Spring 2018 15 / 55

Sample Representation

Theorem
Given a list {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} there is exactly
one polynomial p of degree n − 1 such that p(xj) = yj for
j = 0, 1, . . . , n − 1.

So representation is valid.
Can use same x0, x1, . . . , xn−1 for all polynomials of degree n − 1.
No need to store them explicitly and hence need only n numbers
y0, y1, . . . , yn−1.
(

Ruta (UIUC) CS473 16 Spring 2018 16 / 55

Sample Representation

Theorem
Given a list {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} there is exactly
one polynomial p of degree n − 1 such that p(xj) = yj for
j = 0, 1, . . . , n − 1.

So representation is valid.

Can use same x0, x1, . . . , xn−1 for all polynomials of degree n − 1.
No need to store them explicitly and hence need only n numbers
y0, y1, . . . , yn−1.
(

Ruta (UIUC) CS473 16 Spring 2018 16 / 55

Sample Representation

Theorem
Given a list {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} there is exactly
one polynomial p of degree n − 1 such that p(xj) = yj for
j = 0, 1, . . . , n − 1.

So representation is valid.
Can use same x0, x1, . . . , xn−1 for all polynomials of degree n − 1.
No need to store them explicitly and hence need only n numbers
y0, y1, . . . , yn−1.
(

Ruta (UIUC) CS473 16 Spring 2018 16 / 55

Lagrange Interpolation

Given (x0, y0), . . . , (xn−1, yn−1) the following polynomial p satisfies
the property that p(xj) = yj for j = 0, 1, 2, . . . , n − 1.

p(x) =
n−1∑
j=0

 yj∏
k 6=j(xj − xk)

∏
k 6=j

(x − xk)



For n = 3, p(x) =

y0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)

Easy to verify that p(xj) = yj ! Thus there exists one polynomial of
degree n− 1 that interpolates the values (x0, y0), . . . , (xn−1, yn−1).

Ruta (UIUC) CS473 17 Spring 2018 17 / 55

Lagrange Interpolation

Given (x0, y0), . . . , (xn−1, yn−1) the following polynomial p satisfies
the property that p(xj) = yj for j = 0, 1, 2, . . . , n − 1.

p(x) =
n−1∑
j=0

 yj∏
k 6=j(xj − xk)

∏
k 6=j

(x − xk)


For n = 3, p(x) =

y0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)

Easy to verify that p(xj) = yj ! Thus there exists one polynomial of
degree n− 1 that interpolates the values (x0, y0), . . . , (xn−1, yn−1).

Ruta (UIUC) CS473 17 Spring 2018 17 / 55

Lagrange Interpolation

Given (x0, y0), . . . , (xn−1, yn−1) the following polynomial p satisfies
the property that p(xj) = yj for j = 0, 1, 2, . . . , n − 1.

p(x) =
n−1∑
j=0

 yj∏
k 6=j(xj − xk)

∏
k 6=j

(x − xk)


For n = 3, p(x) =

y0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)

Easy to verify that p(xj) = yj ! Thus there exists one polynomial of
degree n− 1 that interpolates the values (x0, y0), . . . , (xn−1, yn−1).

Ruta (UIUC) CS473 17 Spring 2018 17 / 55

Lagrange Interpolation

Given (x0, y0), . . . , (xn−1, yn−1) there is a polynomial p(x) such
that p(xi) = yi for 0 ≤ i < n. Can there be two distinct
polynomials?

No! Use Fundamental Theorem of Algebra to prove it — exercise.

Ruta (UIUC) CS473 18 Spring 2018 18 / 55

Lagrange Interpolation

Given (x0, y0), . . . , (xn−1, yn−1) there is a polynomial p(x) such
that p(xi) = yi for 0 ≤ i < n. Can there be two distinct
polynomials?

No! Use Fundamental Theorem of Algebra to prove it — exercise.

Ruta (UIUC) CS473 18 Spring 2018 18 / 55

Addition and Multiplication with Sample

Representation

Let a = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} and
b = {(x0, y ′0), (x1, y ′1), . . . (xn−1, y ′n−1)} be two polynomials
of degree n − 1 in sample representation.

a + b can be represented by
{(x0, (y0 + y ′0)), (x1, (y1 + y ′1)), . . . (xn−1, (yn−1 + y ′n−1))}

Thus, can be computed in O(n) time

a · b can be evaluated at n samples
{(x0, (y0 · y ′0)), (x1, (y1 · y ′1)), . . . (xn−1, (yn−1 · y ′n−1))}

Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires
p, q to be in coefficient form.

Ruta (UIUC) CS473 19 Spring 2018 19 / 55

Addition and Multiplication with Sample

Representation

Let a = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} and
b = {(x0, y ′0), (x1, y ′1), . . . (xn−1, y ′n−1)} be two polynomials
of degree n − 1 in sample representation.

a + b can be represented by

{(x0, (y0 + y ′0)), (x1, (y1 + y ′1)), . . . (xn−1, (yn−1 + y ′n−1))}
Thus, can be computed in O(n) time

a · b can be evaluated at n samples
{(x0, (y0 · y ′0)), (x1, (y1 · y ′1)), . . . (xn−1, (yn−1 · y ′n−1))}

Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires
p, q to be in coefficient form.

Ruta (UIUC) CS473 19 Spring 2018 19 / 55

Addition and Multiplication with Sample

Representation

Let a = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} and
b = {(x0, y ′0), (x1, y ′1), . . . (xn−1, y ′n−1)} be two polynomials
of degree n − 1 in sample representation.

a + b can be represented by
{(x0, (y0 + y ′0)), (x1, (y1 + y ′1)), . . . (xn−1, (yn−1 + y ′n−1))}

Thus, can be computed in O(n) time

a · b can be evaluated at n samples
{(x0, (y0 · y ′0)), (x1, (y1 · y ′1)), . . . (xn−1, (yn−1 · y ′n−1))}

Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires
p, q to be in coefficient form.

Ruta (UIUC) CS473 19 Spring 2018 19 / 55

Addition and Multiplication with Sample

Representation

Let a = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} and
b = {(x0, y ′0), (x1, y ′1), . . . (xn−1, y ′n−1)} be two polynomials
of degree n − 1 in sample representation.

a + b can be represented by
{(x0, (y0 + y ′0)), (x1, (y1 + y ′1)), . . . (xn−1, (yn−1 + y ′n−1))}

Thus, can be computed in O(n) time

a · b can be evaluated at n samples

{(x0, (y0 · y ′0)), (x1, (y1 · y ′1)), . . . (xn−1, (yn−1 · y ′n−1))}
Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires
p, q to be in coefficient form.

Ruta (UIUC) CS473 19 Spring 2018 19 / 55

Addition and Multiplication with Sample

Representation

Let a = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} and
b = {(x0, y ′0), (x1, y ′1), . . . (xn−1, y ′n−1)} be two polynomials
of degree n − 1 in sample representation.

a + b can be represented by
{(x0, (y0 + y ′0)), (x1, (y1 + y ′1)), . . . (xn−1, (yn−1 + y ′n−1))}

Thus, can be computed in O(n) time

a · b can be evaluated at n samples
{(x0, (y0 · y ′0)), (x1, (y1 · y ′1)), . . . (xn−1, (yn−1 · y ′n−1))}

Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires
p, q to be in coefficient form.

Ruta (UIUC) CS473 19 Spring 2018 19 / 55

Addition and Multiplication with Sample

Representation

Let a = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} and
b = {(x0, y ′0), (x1, y ′1), . . . (xn−1, y ′n−1)} be two polynomials
of degree n − 1 in sample representation.

a + b can be represented by
{(x0, (y0 + y ′0)), (x1, (y1 + y ′1)), . . . (xn−1, (yn−1 + y ′n−1))}

Thus, can be computed in O(n) time

a · b can be evaluated at n samples
{(x0, (y0 · y ′0)), (x1, (y1 · y ′1)), . . . (xn−1, (yn−1 · y ′n−1))}

Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires
p, q to be in coefficient form.

Ruta (UIUC) CS473 19 Spring 2018 19 / 55

Recall

Goal: given polynomials a = (a0, . . . , an−1) and
b = (b0, . . . , bn−1) in coefficient representation, compute a · b in
coefficient form (convolution).

Sample representation:

Fix x0, . . . , xn−1.

a′ = (x0, a(x0)), . . . , (xn−1, a(xn−1)), similarly b′ from b.

Theorem. Unique degree (n − 1) polynomial corresponding to
any given n samples. a′ is a valid representation of a.

a′ · b′ requires O(n) multiplications.

Plan. Convert to sample representation. Multiply. Convert back to
coefficient representation.

Ruta (UIUC) CS473 20 Spring 2018 20 / 55

Recall

Goal: given polynomials a = (a0, . . . , an−1) and
b = (b0, . . . , bn−1) in coefficient representation, compute a · b in
coefficient form (convolution).

Sample representation:

Fix x0, . . . , xn−1.

a′ = (x0, a(x0)), . . . , (xn−1, a(xn−1)), similarly b′ from b.

Theorem. Unique degree (n − 1) polynomial corresponding to
any given n samples.

a′ is a valid representation of a.

a′ · b′ requires O(n) multiplications.

Plan. Convert to sample representation. Multiply. Convert back to
coefficient representation.

Ruta (UIUC) CS473 20 Spring 2018 20 / 55

Recall

Goal: given polynomials a = (a0, . . . , an−1) and
b = (b0, . . . , bn−1) in coefficient representation, compute a · b in
coefficient form (convolution).

Sample representation:

Fix x0, . . . , xn−1.

a′ = (x0, a(x0)), . . . , (xn−1, a(xn−1)), similarly b′ from b.

Theorem. Unique degree (n − 1) polynomial corresponding to
any given n samples. a′ is a valid representation of a.

a′ · b′ requires O(n) multiplications.

Plan. Convert to sample representation. Multiply. Convert back to
coefficient representation.

Ruta (UIUC) CS473 20 Spring 2018 20 / 55

Recall

Goal: given polynomials a = (a0, . . . , an−1) and
b = (b0, . . . , bn−1) in coefficient representation, compute a · b in
coefficient form (convolution).

Sample representation:

Fix x0, . . . , xn−1.

a′ = (x0, a(x0)), . . . , (xn−1, a(xn−1)), similarly b′ from b.

Theorem. Unique degree (n − 1) polynomial corresponding to
any given n samples. a′ is a valid representation of a.

a′ · b′ requires O(n) multiplications.

Plan. Convert to sample representation. Multiply. Convert back to
coefficient representation.

Ruta (UIUC) CS473 20 Spring 2018 20 / 55

Coefficient representation to Sample representation

Given a polynomial a as (a0, a1, . . . , an−1) can we obtain a sample
representation (x0, y0), . . . , (xn−1, yn−1) quickly? Also can we
invert the representation quickly?

Suppose we choose x0, x1, . . . , xn−1 arbitrarily.

Take O(n) time to evaluate yj = a(xj) given (a0, . . . , an−1).

Total time is Ω(n2)

Inversion via Lagrange interpolation also Ω(n2)

Ruta (UIUC) CS473 21 Spring 2018 21 / 55

Coefficient representation to Sample representation

Given a polynomial a as (a0, a1, . . . , an−1) can we obtain a sample
representation (x0, y0), . . . , (xn−1, yn−1) quickly? Also can we
invert the representation quickly?

Suppose we choose x0, x1, . . . , xn−1 arbitrarily.

Take O(n) time to evaluate yj = a(xj) given (a0, . . . , an−1).

Total time is Ω(n2)

Inversion via Lagrange interpolation also Ω(n2)

Ruta (UIUC) CS473 21 Spring 2018 21 / 55

Key Idea

Can choose x0, x1, . . . , xn−1 carefully!

Total time to evaluate a(x0), a(x1), . . . , a(xn−1) should be better
than evaluating each separately.

How do we choose x0, x1, . . . , xn−1 to save work?

Ruta (UIUC) CS473 22 Spring 2018 22 / 55

Key Idea

Can choose x0, x1, . . . , xn−1 carefully!

Total time to evaluate a(x0), a(x1), . . . , a(xn−1) should be better
than evaluating each separately.

How do we choose x0, x1, . . . , xn−1 to save work?

Ruta (UIUC) CS473 22 Spring 2018 22 / 55

A Simple Start

a(x) = a0 + a1x + a2x2 + a3x3 + . . . + an−1xn−1

Assume n is a power of 2 for rest of the discussion.

Observation: (−x)2j = x2j . Can we exploit this?

Example

3+4x+6x2+2x3+x4+10x5 = (3+6x2+x4)+x(4+2x2+10x4)

a(c) = (3 + 6c2 + c4) + c(4 + 2c2 + 10c4)
a(−c) = (3 + 6c2 + c4)− c(4 + 2c2 + 10c4)

Ruta (UIUC) CS473 23 Spring 2018 23 / 55

A Simple Start

a(x) = a0 + a1x + a2x2 + a3x3 + . . . + an−1xn−1

Assume n is a power of 2 for rest of the discussion.

Observation: (−x)2j = x2j . Can we exploit this?

Example

3+4x+6x2+2x3+x4+10x5 = (3+6x2+x4)+x(4+2x2+10x4)

a(c) = (3 + 6c2 + c4) + c(4 + 2c2 + 10c4)
a(−c) = (3 + 6c2 + c4)− c(4 + 2c2 + 10c4)

Ruta (UIUC) CS473 23 Spring 2018 23 / 55

A Simple Start

a(x) = a0 + a1x + a2x2 + a3x3 + . . . + an−1xn−1

Assume n is a power of 2 for rest of the discussion.

Observation: (−x)2j = x2j . Can we exploit this?

Example

3+4x+6x2+2x3+x4+10x5 = (3+6x2+x4)+x(4+2x2+10x4)

a(c) = (3 + 6c2 + c4) + c(4 + 2c2 + 10c4)

a(−c) = (3 + 6c2 + c4)− c(4 + 2c2 + 10c4)

Ruta (UIUC) CS473 23 Spring 2018 23 / 55

A Simple Start

a(x) = a0 + a1x + a2x2 + a3x3 + . . . + an−1xn−1

Assume n is a power of 2 for rest of the discussion.

Observation: (−x)2j = x2j . Can we exploit this?

Example

3+4x+6x2+2x3+x4+10x5 = (3+6x2+x4)+x(4+2x2+10x4)

a(c) = (3 + 6c2 + c4) + c(4 + 2c2 + 10c4)
a(−c) =

(3 + 6c2 + c4)− c(4 + 2c2 + 10c4)

Ruta (UIUC) CS473 23 Spring 2018 23 / 55

A Simple Start

a(x) = a0 + a1x + a2x2 + a3x3 + . . . + an−1xn−1

Assume n is a power of 2 for rest of the discussion.

Observation: (−x)2j = x2j . Can we exploit this?

Example

3+4x+6x2+2x3+x4+10x5 = (3+6x2+x4)+x(4+2x2+10x4)

a(c) = (3 + 6c2 + c4) + c(4 + 2c2 + 10c4)
a(−c) = (3 + 6c2 + c4)− c(4 + 2c2 + 10c4)

Ruta (UIUC) CS473 23 Spring 2018 23 / 55

Odd and Even Decomposition

Let a = (a0, a1, . . . an−1) be a polynomial.

Let aodd = (a1, a3, a5, . . .) be the (n/2− 1) degree
polynomial defined by the odd coefficients; so

aodd(x) = a1 + a3x + a5x2 + · · ·

Similarly, let aeven(x) = a0 + a2x + . . . be the (n/2− 1)
degree polynomial defined by the even coefficients.

Observe
a(x) = aeven(x2) + xaodd(x2)

Thus, evaluating a at x can be reduced to evaluating lower
degree polynomials plus constantly many arithmetic operations.

Ruta (UIUC) CS473 24 Spring 2018 24 / 55

Odd and Even Decomposition

Let a = (a0, a1, . . . an−1) be a polynomial.

Let aodd = (a1, a3, a5, . . .) be the (n/2− 1) degree
polynomial defined by the odd coefficients; so

aodd(x) = a1 + a3x + a5x2 + · · ·

Similarly, let aeven(x) = a0 + a2x + . . . be the (n/2− 1)
degree polynomial defined by the even coefficients.

Observe
a(x) = aeven(x2) + xaodd(x2)

Thus, evaluating a at x can be reduced to evaluating lower
degree polynomials plus constantly many arithmetic operations.

Ruta (UIUC) CS473 24 Spring 2018 24 / 55

Odd and Even Decomposition

Let a = (a0, a1, . . . an−1) be a polynomial.

Let aodd = (a1, a3, a5, . . .) be the (n/2− 1) degree
polynomial defined by the odd coefficients; so

aodd(x) = a1 + a3x + a5x2 + · · ·

Similarly, let aeven(x) = a0 + a2x + . . . be the (n/2− 1)
degree polynomial defined by the even coefficients.

Observe
a(x) = aeven(x2) + xaodd(x2)

Thus, evaluating a at x can be reduced to evaluating lower
degree polynomials plus constantly many arithmetic operations.

Ruta (UIUC) CS473 24 Spring 2018 24 / 55

Exploiting Odd-Even Decomposition

a(x) = aeven(x2) + xaodd(x2)

Choose n samples
x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Evaluate aeven and aodd at x2
0 , x

2
1 , x

2
2 , . . . , x

2
n/2−1.

For each i = 0 to (n/2− 1), evaluate
a(xi) = aeven(x2

i) + xiaodd(x2
i)

a(−xi) = aeven(x2
i)− xiaodd(x2

i)
Total of O(n) work!

Suppose we can make this work recursively. Then

T (n) = 2T (n/2) + O(n) which implies T (n) = O(n log n)

Ruta (UIUC) CS473 25 Spring 2018 25 / 55

Exploiting Odd-Even Decomposition

a(x) = aeven(x2) + xaodd(x2)

Choose n samples
x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Evaluate aeven and aodd at x2
0 , x

2
1 , x

2
2 , . . . , x

2
n/2−1.

For each i = 0 to (n/2− 1), evaluate
a(xi) = aeven(x2

i) + xiaodd(x2
i)

a(−xi) = aeven(x2
i)− xiaodd(x2

i)

Total of O(n) work!

Suppose we can make this work recursively. Then

T (n) = 2T (n/2) + O(n) which implies T (n) = O(n log n)

Ruta (UIUC) CS473 25 Spring 2018 25 / 55

Exploiting Odd-Even Decomposition

a(x) = aeven(x2) + xaodd(x2)

Choose n samples
x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Evaluate aeven and aodd at x2
0 , x

2
1 , x

2
2 , . . . , x

2
n/2−1.

For each i = 0 to (n/2− 1), evaluate
a(xi) = aeven(x2

i) + xiaodd(x2
i)

a(−xi) = aeven(x2
i)− xiaodd(x2

i)
Total of O(n) work!

Suppose we can make this work recursively. Then

T (n) = 2T (n/2) + O(n) which implies T (n) = O(n log n)

Ruta (UIUC) CS473 25 Spring 2018 25 / 55

Exploiting Odd-Even Decomposition

a(x) = aeven(x2) + xaodd(x2)

Choose n samples
x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Evaluate aeven and aodd at x2
0 , x

2
1 , x

2
2 , . . . , x

2
n/2−1.

For each i = 0 to (n/2− 1), evaluate
a(xi) = aeven(x2

i) + xiaodd(x2
i)

a(−xi) = aeven(x2
i)− xiaodd(x2

i)
Total of O(n) work!

Suppose we can make this work recursively. Then

T (n) = 2T (n/2) + O(n) which implies T (n) = O(n log n)

Ruta (UIUC) CS473 25 Spring 2018 25 / 55

Collapsible sets

Definition
Given a set X of numbers square(X) (for square of X) is the set
{x2 | x ∈ X}.

Definition
A set X of n numbers is collapsible if square(X) ⊂ X and
|square(X)| = n/2.

Definition
A set X of n numbers (for n a power of 2) is recursively collapsible if
n = 1 or if X is collapsible and square(X) is recursively collapsible.

Ruta (UIUC) CS473 26 Spring 2018 26 / 55

Collapsible sets

Definition
Given a set X of numbers square(X) (for square of X) is the set
{x2 | x ∈ X}.

Definition
A set X of n numbers is collapsible if square(X) ⊂ X and
|square(X)| = n/2.

Definition
A set X of n numbers (for n a power of 2) is recursively collapsible if
n = 1 or if X is collapsible and square(X) is recursively collapsible.

Ruta (UIUC) CS473 26 Spring 2018 26 / 55

Collapsible sets

Definition
Given a set X of numbers square(X) (for square of X) is the set
{x2 | x ∈ X}.

Definition
A set X of n numbers is collapsible if square(X) ⊂ X and
|square(X)| = n/2.

Definition
A set X of n numbers (for n a power of 2) is recursively collapsible if
n = 1 or if X is collapsible and square(X) is recursively collapsible.

Ruta (UIUC) CS473 26 Spring 2018 26 / 55

Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X) in O(n) time %note:|square(X)| = n/2

{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i) + xiaodd (x2

i)

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55

Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X) in O(n) time %note:|square(X)| = n/2
{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i) + xiaodd (x2

i)

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55

Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X) in O(n) time %note:|square(X)| = n/2
{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i) + xiaodd (x2

i)

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55

ruta2
Pencil

ruta2
Pencil

Divide and Conquer assuming collapsible set

Given a recursively collapsible set X of size n, compute sample
representation of polynomial a of degree (n − 1) as follows:

SampleRepresentation(a, X, n)
If n = 1 return a(x0) where X = {x0}
Compute square(X) in O(n) time %note:|square(X)| = n/2
{y0, y1, . . . , yn/2−1} =SampleRepresentation(aodd , square(X), n/2)
{y ′0, y ′1, . . . , y ′n/2−1} =SampleRepresentation(aeven, square(X), n/2)

For each i from 0 to (n − 1) compute

zi = aeven(x2
i) + xiaodd (x2

i)

Return {z0, z1, . . . , zn−1}

Exercise: show that algorithm runs in O(n log n) time

Ruta (UIUC) CS473 27 Spring 2018 27 / 55

Are there collapsible sets?

n samples x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Next step in recursion x2
0 , x

2
1 , . . . , x

2
n/2−1

To continue recursion, we need

{x2
0 , x

2
1 , . . . , x

2
n
2
−1} = {z0, z1, . . . , z n

4
−1,−z0,−z1, . . . ,−z n

4
−1}

If z0 = x2
0 and −z0 = x2

n/4 then x0 =
√
−1xn/4 That is

x0 = ixn/4 where i is the imaginary number.

Can continue recursion but need to go to complex numbers.

Ruta (UIUC) CS473 28 Spring 2018 28 / 55

Are there collapsible sets?

n samples x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Next step in recursion x2
0 , x

2
1 , . . . , x

2
n/2−1

To continue recursion, we need

{x2
0 , x

2
1 , . . . , x

2
n
2
−1} = {z0, z1, . . . , z n

4
−1,−z0,−z1, . . . ,−z n

4
−1}

If z0 = x2
0 and −z0 = x2

n/4 then x0 =
√
−1xn/4 That is

x0 = ixn/4 where i is the imaginary number.

Can continue recursion but need to go to complex numbers.

Ruta (UIUC) CS473 28 Spring 2018 28 / 55

Are there collapsible sets?

n samples x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Next step in recursion x2
0 , x

2
1 , . . . , x

2
n/2−1

To continue recursion, we need

{x2
0 , x

2
1 , . . . , x

2
n
2
−1} = {z0, z1, . . . , z n

4
−1,−z0,−z1, . . . ,−z n

4
−1}

If z0 = x2
0 and −z0 = x2

n/4 then x0 =
√
−1xn/4 That is

x0 = ixn/4 where i is the imaginary number.

Can continue recursion but need to go to complex numbers.

Ruta (UIUC) CS473 28 Spring 2018 28 / 55

Are there collapsible sets?

n samples x0, x1, x2, . . . , xn/2−1,−x0,−x1, . . . ,−xn/2−1

Next step in recursion x2
0 , x

2
1 , . . . , x

2
n/2−1

To continue recursion, we need

{x2
0 , x

2
1 , . . . , x

2
n
2
−1} = {z0, z1, . . . , z n

4
−1,−z0,−z1, . . . ,−z n

4
−1}

If z0 = x2
0 and −z0 = x2

n/4 then x0 =
√
−1xn/4 That is

x0 = ixn/4 where i is the imaginary number.

Can continue recursion but need to go to complex numbers.

Ruta (UIUC) CS473 28 Spring 2018 28 / 55

Complex Numbers

Notation

For the rest of lecture, i stands for
√
−1

Definition
Complex numbers are points lying in the complex plane represented as

Cartesian a + ib =
√

a2 + b2e(arctan(b/a))i

Polar reθi = r(cos θ + i sin θ)

Thus, eπi = −1 and e2πi = 1.

Ruta (UIUC) CS473 29 Spring 2018 29 / 55

Power Series for Functions (Recall)

What is ez when z is a real number? When z is a complex number?

ez = 1 + z/1! + z2/2! + . . . + z j/j! + . . .

Therefore

e iθ = 1 + iθ/1! + (iθ)2/2! + (iθ)3/3! + . . .

= (1− θ2/2! + θ4/4!− . . .+) + i(θ − θ3/3! + . . .+)

= cos θ + i sin θ

Ruta (UIUC) CS473 30 Spring 2018 30 / 55

Complex Roots of Unity

What are the roots of the polynomial xk − 1? (e2πi = 1)

Clearly 1 is a root.

Suppose reθi is a root then r kekθi = 1 which implies that
r = 1 and kθ = 2π ⇒ θ = 2π/k

Let ωk = e2πi/k . The roots are 1 = ω0
k , ω

2
k , . . . , ω

k−1
k where

ωj
k = e2πji/k .

Proposition

Let ωk be e2πi/k . The equation xk = 1 has k distinct complex roots
given by ωj

k = e(2πj)i/k for j = 0, 1, . . . k − 1

Proof.

(ωj
k)k = (e2πji/k)k = e2πji = (e2πi)j = (1)j = 1

Ruta (UIUC) CS473 31 Spring 2018 31 / 55

Complex Roots of Unity

What are the roots of the polynomial xk − 1? (e2πi = 1)

Clearly 1 is a root.

Suppose reθi is a root then r kekθi = 1 which implies that
r = 1 and kθ = 2π ⇒ θ = 2π/k

Let ωk = e2πi/k . The roots are 1 = ω0
k , ω

2
k , . . . , ω

k−1
k where

ωj
k = e2πji/k .

Proposition

Let ωk be e2πi/k . The equation xk = 1 has k distinct complex roots
given by ωj

k = e(2πj)i/k for j = 0, 1, . . . k − 1

Proof.

(ωj
k)k = (e2πji/k)k = e2πji = (e2πi)j = (1)j = 1

Ruta (UIUC) CS473 31 Spring 2018 31 / 55

Complex Roots of Unity

What are the roots of the polynomial xk − 1? (e2πi = 1)

Clearly 1 is a root.

Suppose reθi is a root then r kekθi = 1 which implies that
r = 1 and kθ = 2π ⇒ θ = 2π/k

Let ωk = e2πi/k . The roots are 1 = ω0
k , ω

2
k , . . . , ω

k−1
k where

ωj
k = e2πji/k .

Proposition

Let ωk be e2πi/k . The equation xk = 1 has k distinct complex roots
given by ωj

k = e(2πj)i/k for j = 0, 1, . . . k − 1

Proof.

(ωj
k)k = (e2πji/k)k = e2πji = (e2πi)j = (1)j = 1

Ruta (UIUC) CS473 31 Spring 2018 31 / 55

Complex Roots of Unity

What are the roots of the polynomial xk − 1? (e2πi = 1)

Clearly 1 is a root.

Suppose reθi is a root then r kekθi = 1 which implies that
r = 1 and kθ = 2π ⇒ θ = 2π/k

Let ωk = e2πi/k . The roots are 1 = ω0
k , ω

2
k , . . . , ω

k−1
k where

ωj
k = e2πji/k .

Proposition

Let ωk be e2πi/k . The equation xk = 1 has k distinct complex roots
given by ωj

k = e(2πj)i/k for j = 0, 1, . . . k − 1

Proof.

(ωj
k)k = (e2πji/k)k = e2πji = (e2πi)j = (1)j = 1

Ruta (UIUC) CS473 31 Spring 2018 31 / 55

Roots of unity form a collapsible set

Observation 1: ωj
k = ωj mod k

k

Lemma
Assume n is a power of 2. The n’th roots of unity are a recursively
collapsible set.

Proof.

Let Xn = {1, ωn, ω
2
n, . . . , ω

n−1
n }. (ωn/2+j

n)2 = ωn+2j
n = ω2j

n , for
each j < n/2.

X1 = {1}, X2 = {1,−1}
X4 = {1,−1, i ,−i}
X8 = {1,−1, i ,−i , 1√

2
(±1± i)}

Ruta (UIUC) CS473 32 Spring 2018 32 / 55

ruta2
Pencil

Roots of unity form a collapsible set

Observation 1: ωj
k = ωj mod k

k

Lemma
Assume n is a power of 2. The n’th roots of unity are a recursively
collapsible set.

Proof.

Let Xn = {1, ωn, ω
2
n, . . . , ω

n−1
n }.

(ωn/2+j
n)2 = ωn+2j

n = ω2j
n , for

each j < n/2.

X1 = {1}, X2 = {1,−1}
X4 = {1,−1, i ,−i}
X8 = {1,−1, i ,−i , 1√

2
(±1± i)}

Ruta (UIUC) CS473 32 Spring 2018 32 / 55

Roots of unity form a collapsible set

Observation 1: ωj
k = ωj mod k

k

Lemma
Assume n is a power of 2. The n’th roots of unity are a recursively
collapsible set.

Proof.

Let Xn = {1, ωn, ω
2
n, . . . , ω

n−1
n }. (ωn/2+j

n)2 = ωn+2j
n = ω2j

n ,

for
each j < n/2.

X1 = {1}, X2 = {1,−1}
X4 = {1,−1, i ,−i}
X8 = {1,−1, i ,−i , 1√

2
(±1± i)}

Ruta (UIUC) CS473 32 Spring 2018 32 / 55

Roots of unity form a collapsible set

Observation 1: ωj
k = ωj mod k

k

Lemma
Assume n is a power of 2. The n’th roots of unity are a recursively
collapsible set.

Proof.

Let Xn = {1, ωn, ω
2
n, . . . , ω

n−1
n }. (ωn/2+j

n)2 = ωn+2j
n = ω2j

n , for
each j < n/2.

X1 = {1}, X2 = {1,−1}
X4 = {1,−1, i ,−i}
X8 = {1,−1, i ,−i , 1√

2
(±1± i)}

Ruta (UIUC) CS473 32 Spring 2018 32 / 55

Roots of unity form a collapsible set

Observation 1: ωj
k = ωj mod k

k

Lemma
Assume n is a power of 2. The n’th roots of unity are a recursively
collapsible set.

Proof.

Let Xn = {1, ωn, ω
2
n, . . . , ω

n−1
n }. (ωn/2+j

n)2 = ωn+2j
n = ω2j

n , for
each j < n/2.

X1 = {1}, X2 = {1,−1}
X4 = {1,−1, i ,−i}
X8 = {1,−1, i ,−i , 1√

2
(±1± i)}

Ruta (UIUC) CS473 32 Spring 2018 32 / 55

Discrete Fourier Transform

Definition
Given vector a = (a0, a1, . . . , an−1) the Discrete Fourier Transform
(DFT) of a is the vector a′ = (a′0, a

′
1, . . . , a

′
n−1) where a′j = a(ωj

n)
for 0 ≤ j < n.

a′ is a sample representation of polynomial with coefficient
reprentation a at n’th roots of unity.

We have shown that a′ can be computed from a in O(n log n) time.
This divide and conquer algorithm is called the Fast Fourier
Transform (FFT).

Ruta (UIUC) CS473 33 Spring 2018 33 / 55

Discrete Fourier Transform

Definition
Given vector a = (a0, a1, . . . , an−1) the Discrete Fourier Transform
(DFT) of a is the vector a′ = (a′0, a

′
1, . . . , a

′
n−1) where a′j = a(ωj

n)
for 0 ≤ j < n.

a′ is a sample representation of polynomial with coefficient
reprentation a at n’th roots of unity.

We have shown that a′ can be computed from a in O(n log n) time.
This divide and conquer algorithm is called the Fast Fourier
Transform (FFT).

Ruta (UIUC) CS473 33 Spring 2018 33 / 55

Back to Convolutions and Polynomial

Multiplication

Convolutions (products)

Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Evaluate a and b at some n sample points.

2 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1).

3 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Can we really compute c from c ′? We only have n sample points
and c ′ has 2n − 1 coefficients!

Ruta (UIUC) CS473 34 Spring 2018 34 / 55

Back to Convolutions and Polynomial

Multiplication

Convolutions (products)

Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Evaluate a and b at the nth roots of unity.

2 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1).

3 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Can we really compute c from c ′?

We only have n sample points
and c ′ has 2n − 1 coefficients!

Ruta (UIUC) CS473 34 Spring 2018 34 / 55

Back to Convolutions and Polynomial

Multiplication

Convolutions (products)

Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Evaluate a and b at the nth roots of unity.

2 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1).

3 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Can we really compute c from c ′? We only have n sample points
and c ′ has 2n − 1 coefficients!

Ruta (UIUC) CS473 34 Spring 2018 34 / 55

Convolutions and Polynomial Multiplication

Convolutions
Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Pad a with n zeroes to make it a (2n − 1) degree polynomial
a = (a0, a1, . . . , an−1, an, an+1, . . . , a2n−1). Similarly for b.

2 Compute values of a and b at the 2nth roots of unity.

3 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1, . . . , a

′
2n−1b

′
2n−1).

4 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Step 2 takes O(n log n) using divide and conquer algorithm

Step 3 takes O(n) time

Step 4?

Ruta (UIUC) CS473 35 Spring 2018 35 / 55

Convolutions and Polynomial Multiplication

Convolutions
Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Pad a with n zeroes to make it a (2n − 1) degree polynomial
a = (a0, a1, . . . , an−1, an, an+1, . . . , a2n−1). Similarly for b.

2 Compute values of a and b at the 2nth roots of unity.

3 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1, . . . , a

′
2n−1b

′
2n−1).

4 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Step 2 takes O(n log n) using divide and conquer algorithm

Step 3 takes O(n) time

Step 4?

Ruta (UIUC) CS473 35 Spring 2018 35 / 55

Convolutions and Polynomial Multiplication

Convolutions
Compute convolution c = (c0, c1, . . . , c2n−2) of
a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)

1 Pad a with n zeroes to make it a (2n − 1) degree polynomial
a = (a0, a1, . . . , an−1, an, an+1, . . . , a2n−1). Similarly for b.

2 Compute values of a and b at the 2nth roots of unity.

3 Compute sample representation of product. That is
c ′ = (a′0b

′
0, a
′
1b
′
1, . . . , a

′
n−1b

′
n−1, . . . , a

′
2n−1b

′
2n−1).

4 Compute coefficients of unique polynomial associated with
sample representation of product. That is compute c from c ′.

Step 2 takes O(n log n) using divide and conquer algorithm

Step 3 takes O(n) time

Step 4?
Ruta (UIUC) CS473 35 Spring 2018 35 / 55

Part II

Inverse Fourier Transform

Ruta (UIUC) CS473 36 Spring 2018 36 / 55

Inverse Fourier Transform

Input Given the evaluation of a n − 1-degree polynomial a on
the nth roots of unity specified by vector a′

Goal Compute the coefficients of a

We saw that a′ can be computed from a in O(n log n) time. Can
we compute a from a′ in O(n log n) time?

Ruta (UIUC) CS473 37 Spring 2018 37 / 55

A Matrix Point of View

a(x) = a0 + a1x + · · ·+ an−1xn−1

a′0 = a(x0), a′1 = a(x1), . . . , a′n−1 = a(xn−1).

1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xj x2
j . . . xn−1

j
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1





a0

a1
...
aj
...

an−1


=



a′0
a′1
...
a′j
...

a′n−1



Ruta (UIUC) CS473 38 Spring 2018 38 / 55

A Matrix Point of View

a(x) = a0 + a1x + · · ·+ an−1xn−1

Denote ω = ω1
n = e2π/n. Let xj = ωj

a′0 = a(1), a′1 = a(ω), . . . , a′n−1 = a(ωn−1).



1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωj ω2j . . . ωj(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)





a0

a1
...
aj
...

an−1


=



a′0
a′1
...
a′j
...

a′n−1



Ruta (UIUC) CS473 39 Spring 2018 39 / 55

ruta2
Pencil

Inverting the Matrix



a0

a1
...
aj
...

an−1


=



1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωj ω2j . . . ωj(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



−1 

a′0
a′1
...
a′j
...

a′n−1



Ruta (UIUC) CS473 40 Spring 2018 40 / 55

Inverting the Matrix



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ωj ω2j . . . ωj(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



−1

=
1

n



1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ω−j ω−2j . . . ω−j(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)(n−1)



Replace ω by ω−1 which is also a root of unity!
Since ωj = ωj mod n, we get ω−j = e−j2π/n = ω(n−j)2π/n.

Inverse matrix is simply a permutation of the original matrix modulo
scale factor 1/n.

Ruta (UIUC) CS473 41 Spring 2018 41 / 55

Inverting the Matrix



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ωj ω2j . . . ωj(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



−1

=
1

n



1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ω−j ω−2j . . . ω−j(n−1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)(n−1)



Replace ω by ω−1 which is also a root of unity!
Since ωj = ωj mod n, we get ω−j = e−j2π/n = ω(n−j)2π/n.

Inverse matrix is simply a permutation of the original matrix modulo
scale factor 1/n.

Ruta (UIUC) CS473 41 Spring 2018 41 / 55

Why does it work?

Check VV−1 = I where I is the n × n identity matrix.

Observation:
∑n−1

s=0 (ωj)s = (1 +ωj +ω2j + . . .+ω(n−1)j) = 0, j 6= 0

ωj is root of xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + 1)

Thus, ωj is root of (xn−1 + xn−2 + . . . + 1)

(1, ωj , ω2j , . . . , ωj(n−1))·(1, ω−k , ω−2k , . . . , ω−k(n−1)) =
n−1∑
s=0

ωs(j−k)

Note that ωj−k is a n’th root of unity. If j = k then sum is n,
otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of V−1) are orthogonal.
Thus a′ = Va can be thought of transforming the vector a into a
new Fourier basis with basis vectors corresponding to rows of V .

Ruta (UIUC) CS473 42 Spring 2018 42 / 55

Why does it work?

Check VV−1 = I where I is the n × n identity matrix.

Observation:
∑n−1

s=0 (ωj)s = (1 +ωj +ω2j + . . .+ω(n−1)j) = 0, j 6= 0

ωj is root of xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + 1)

Thus, ωj is root of (xn−1 + xn−2 + . . . + 1)

(1, ωj , ω2j , . . . , ωj(n−1))·(1, ω−k , ω−2k , . . . , ω−k(n−1)) =
n−1∑
s=0

ωs(j−k)

Note that ωj−k is a n’th root of unity. If j = k then sum is n,
otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of V−1) are orthogonal.
Thus a′ = Va can be thought of transforming the vector a into a
new Fourier basis with basis vectors corresponding to rows of V .

Ruta (UIUC) CS473 42 Spring 2018 42 / 55

Why does it work?

Check VV−1 = I where I is the n × n identity matrix.

Observation:
∑n−1

s=0 (ωj)s = (1 +ωj +ω2j + . . .+ω(n−1)j) = 0, j 6= 0

ωj is root of xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + 1)

Thus, ωj is root of (xn−1 + xn−2 + . . . + 1)

(1, ωj , ω2j , . . . , ωj(n−1))·(1, ω−k , ω−2k , . . . , ω−k(n−1)) =
n−1∑
s=0

ωs(j−k)

Note that ωj−k is a n’th root of unity. If j = k then sum is n,
otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of V−1) are orthogonal.
Thus a′ = Va can be thought of transforming the vector a into a
new Fourier basis with basis vectors corresponding to rows of V .

Ruta (UIUC) CS473 42 Spring 2018 42 / 55

Why does it work?

Check VV−1 = I where I is the n × n identity matrix.

Observation:
∑n−1

s=0 (ωj)s = (1 +ωj +ω2j + . . .+ω(n−1)j) = 0, j 6= 0

ωj is root of xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + 1)

Thus, ωj is root of (xn−1 + xn−2 + . . . + 1)

(1, ωj , ω2j , . . . , ωj(n−1))·(1, ω−k , ω−2k , . . . , ω−k(n−1)) =
n−1∑
s=0

ωs(j−k)

Note that ωj−k is a n’th root of unity. If j = k then sum is n,
otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of V−1) are orthogonal.
Thus a′ = Va can be thought of transforming the vector a into a
new Fourier basis with basis vectors corresponding to rows of V .

Ruta (UIUC) CS473 42 Spring 2018 42 / 55

Why does it work?

Check VV−1 = I where I is the n × n identity matrix.

Observation:
∑n−1

s=0 (ωj)s = (1 +ωj +ω2j + . . .+ω(n−1)j) = 0, j 6= 0

ωj is root of xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + 1)

Thus, ωj is root of (xn−1 + xn−2 + . . . + 1)

(1, ωj , ω2j , . . . , ωj(n−1))·(1, ω−k , ω−2k , . . . , ω−k(n−1)) =
n−1∑
s=0

ωs(j−k)

Note that ωj−k is a n’th root of unity. If j = k then sum is n,
otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of V−1) are orthogonal.
Thus a′ = Va can be thought of transforming the vector a into a
new Fourier basis with basis vectors corresponding to rows of V .

Ruta (UIUC) CS473 42 Spring 2018 42 / 55

Inverse Fourier Transform

Input Given the evaluation of a n − 1-degree polynomial a on
the nth roots of unity specified by vector a′

Goal Compute the coefficients of a

We saw that a′ can be computed from a in O(n log n) time. Can
we compute a from a′ in O(n log n) time?

Yes! a = V−1a′ which is simply a permuted and scaled version of
DFT. Hence can be computed in O(n log n) time.

Ruta (UIUC) CS473 43 Spring 2018 43 / 55

Convolutions Once More

Convolutions
Compute convolution of a = (a0, a1, . . . an−1) and
b = (b0, b1, . . . bn−1)

1 Compute values of a and b at the 2nth roots of unity

2 Compute sample representation c ′ of product c = a · b
3 Compute c from c ′ using inverse Fourier transform.

Step 1 takes O(n log n) using two FFTs

Step 2 takes O(n) time

Step 3 takes O(n log n) using one FFT

Ruta (UIUC) CS473 44 Spring 2018 44 / 55

FFT Circuit

Algorithms Lecture 3: Fast Fourier Transforms

FFT(n/2)

FFT(n/2)

P P*

U U*

V V*

bit reversal permutation butterfly network

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

The recursive structure of the FFT algorithm.

If we expand this recursive structure completely, we see that the circuit splits naturally into
two parts. The left half computes the bit-reversal permutation of the input. To find the position of
P [k] in this permutation, write k in binary, and then read the bits backward. For example, in an
8-element bit-reversal permutation, P [3] = P [0112] ends up in position 6 = 1102. The right half of
the FFT circuit is a butterfly network. Butterfly networks are often used to route between processors
in massively-parallel computers, since they allow any processor to communicate with any other in
only O(log n) steps.

Caveat Lector! This presentation is appropriate for graduate students or undergrads with
strong math backgrounds, but it leaves most undergrads confused. You may find it less
confusing to approach the material in the opposite order, as follows:

First, any polynomial can be split into even-degree and odd-degree parts:

p(x) = peven(x2) + x · podd(x2).

We can evaluate p(x) by recursively evaluating peven(x2) and podd(x2) and doing O(1)
arithmetic operations.

Now suppose our task is to evaluate the degree-n polynomial p(x) at n different points x,
as quickly as possible. To exploit the even/odd recursive structure, we must choose the n
evaluation points carefully. Call a set X of n values delicious if either (1) X has only one
element, or (2) the set X2 = {x2 | x ∈ X} has only n/2 elements and X2 is delicious.
Clearly such a set exists only if N is a power of two. If someone magically handed us a
delicious set X, we could compute {p(x) | x ∈ X} in O(n log n) time using the even/odd
recursive structure. Bit reversal permutation, blah blah blah, butterfly network, yadda yadda
yadda.

If n is a power of two, then the set of integers {0, 1, . . . , n − 1} is delicious, provided
we perform all arithmetic modulo n. But that only tells us p(x) mod n, and we want
the actual value of p(x). Of course, we can use larger moduli: {0, k, 2k, . . . , (n − 1)k}
is delicious mod nk. We can avoid modular arithmetic entirely by using complex roots of
unity—the set {e2πi/n | i = 0, 1, . . . , n− 1} is delicious! The sequence of values p(e2πi/n)
is called the discrete Fourier transform of p.

Finally, to invert this transformation from coefficients to values, we repeat exactly the same
procedure, using the same delicious set but in the opposite order. Blardy blardy, linear
algebra, hi dee hi dee hi dee ho.

c© Copyright 2006 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License (http://creativecommons.org/licenses/by-nc-sa/2.5/)

9

Ruta (UIUC) CS473 45 Spring 2018 45 / 55

Numerical Issues

As noted earlier evaluating a polynomial p at a point x makes
numbers big

Are we cheating when we say O(n log n) algorithm for
convolution?

Can get around numerical issues — work in finite fields and
avoid numbers growing too big.

Outside the scope of lecture

We will assume for reductions that convolution can be done in
O(n log n) time.

Ruta (UIUC) CS473 46 Spring 2018 46 / 55

Numerical Issues: Puzzle

Ruta (UIUC) CS473 47 Spring 2018 47 / 55

ruta2
Pencil

Part III

Application to String Matching

Ruta (UIUC) CS473 48 Spring 2018 48 / 55

Basic string matching problem:

Input Given a pattern string P on length m and a text string
T of length n over a fixed alphabet Σ

Goal Does P occur as a substring of T? Find all “matches”
of P in T .

Several generalizations. Matching with don’t cares.

Input Given a pattern string P on length m over Σ ∪ {∗} (∗
is a don’t care) and a text string T of length n over Σ

Goal Find all “matches” of P in T . ∗ matches with any
character of Σ

Example: P = a ∗ ∗, T = aardvark

Matches?

Ruta (UIUC) CS473 49 Spring 2018 49 / 55

Basic string matching problem:

Input Given a pattern string P on length m and a text string
T of length n over a fixed alphabet Σ

Goal Does P occur as a substring of T? Find all “matches”
of P in T .

Several generalizations. Matching with don’t cares.

Input Given a pattern string P on length m over Σ ∪ {∗} (∗
is a don’t care) and a text string T of length n over Σ

Goal Find all “matches” of P in T . ∗ matches with any
character of Σ

Example: P = a ∗ ∗, T = aardvark

Matches?

Ruta (UIUC) CS473 49 Spring 2018 49 / 55

Basic string matching problem:

Input Given a pattern string P on length m and a text string
T of length n over a fixed alphabet Σ

Goal Does P occur as a substring of T? Find all “matches”
of P in T .

Several generalizations. Matching with don’t cares.

Input Given a pattern string P on length m over Σ ∪ {∗} (∗
is a don’t care) and a text string T of length n over Σ

Goal Find all “matches” of P in T . ∗ matches with any
character of Σ

Example: P = a ∗ ∗, T = aardvark

Matches?

Ruta (UIUC) CS473 49 Spring 2018 49 / 55

Shifted products via Convolution

Given two arrays A and B with say with A[0..m − 1] and
B[0..n − 1] with m ≤ n

Input Two arrays: A[0..(m − 1)] and B[0..(n − 1)].

Goal Compute all shifted products in array
C [0..(n−m− 1)] where C [i] =

∑m−1
j=0 A[j]B[i + j].

Example: A = [0, 1, 1, 0], B = [0, 0, 1, 1, 1, 0, 1]
C =

Lemma
Reverse of C is the convolution of the vectors A and reverse of B.

Proof.
Exercise.

Ruta (UIUC) CS473 50 Spring 2018 50 / 55

Shifted products via Convolution

Given two arrays A and B with say with A[0..m − 1] and
B[0..n − 1] with m ≤ n

Input Two arrays: A[0..(m − 1)] and B[0..(n − 1)].

Goal Compute all shifted products in array
C [0..(n−m− 1)] where C [i] =

∑m−1
j=0 A[j]B[i + j].

Example: A = [0, 1, 1, 0], B = [0, 0, 1, 1, 1, 0, 1]
C =

Lemma
Reverse of C is the convolution of the vectors A and reverse of B.

Proof.
Exercise.

Ruta (UIUC) CS473 50 Spring 2018 50 / 55

Shifted products via Convolution

Given two arrays A and B with say with A[0..m − 1] and
B[0..n − 1] with m ≤ n

Input Two arrays: A[0..(m − 1)] and B[0..(n − 1)].

Goal Compute all shifted products in array
C [0..(n−m− 1)] where C [i] =

∑m−1
j=0 A[j]B[i + j].

Example: A = [0, 1, 1, 0], B = [0, 0, 1, 1, 1, 0, 1]
C =

Lemma
Reverse of C is the convolution of the vectors A and reverse of B.

Proof.
Exercise.

Ruta (UIUC) CS473 50 Spring 2018 50 / 55

Reduction of pattern matching to shifted products

Assume first that Σ = {0, 1}
Goal:

Convert P = a0a1 . . . am−1 to binary array A of size m.

Convert T = b0b1 . . . bn−1 to binary array B of size n.

So that we can use shifted product C of A and B to count
“mismatches”.

Type 1 mismatches: C [i] counts # j ’s where P[j] = 0 and
T [i + j] = 1, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 1 mismatches:
B[j] = T [j]
If P[j] = 0 set A[j] = 1, if P[j] = 1 or ∗ set A[j] = 0.

Ruta (UIUC) CS473 51 Spring 2018 51 / 55

Reduction of pattern matching to shifted products

Assume first that Σ = {0, 1}
Goal:

Convert P = a0a1 . . . am−1 to binary array A of size m.

Convert T = b0b1 . . . bn−1 to binary array B of size n.

So that we can use shifted product C of A and B to count
“mismatches”.

Type 1 mismatches: C [i] counts # j ’s where P[j] = 0 and
T [i + j] = 1, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 1 mismatches:
B[j] = T [j]
If P[j] = 0 set A[j] = 1, if P[j] = 1 or ∗ set A[j] = 0.

Ruta (UIUC) CS473 51 Spring 2018 51 / 55

Reduction of pattern matching to shifted products

Assume first that Σ = {0, 1}
Goal:

Convert P = a0a1 . . . am−1 to binary array A of size m.

Convert T = b0b1 . . . bn−1 to binary array B of size n.

So that we can use shifted product C of A and B to count
“mismatches”.

Type 1 mismatches: C [i] counts # j ’s where P[j] = 0 and
T [i + j] = 1, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 1 mismatches:
B[j] = T [j]
If P[j] = 0 set A[j] = 1, if P[j] = 1 or ∗ set A[j] = 0.

Ruta (UIUC) CS473 51 Spring 2018 51 / 55

Reduction of pattern matching to shifted products

Assume first that Σ = {0, 1}
Goal:

Convert P = a0a1 . . . am−1 to binary array A of size m.

Convert T = b0b1 . . . bn−1 to binary array B of size n.

So that we can use shifted product C of A and B to count
“mismatches”.

Type 1 mismatches: C [i] counts # j ’s where P[j] = 0 and
T [i + j] = 1, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 1 mismatches:
B[j] = T [j]
If P[j] = 0 set A[j] = 1, if P[j] = 1 or ∗ set A[j] = 0.

Ruta (UIUC) CS473 51 Spring 2018 51 / 55

Reduction of pattern matching to shifted products

Type 2 mismatches: C [i] counts # j ’s where P[j] = 1 and
T [i + j] = 0, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 2 mismatches:

B[j] = (1− T [j]) (flip the bits)
If P[j] = 0 or ∗ set A[j] = 0, if P[j] = 1 set A[j] = 1.

There is a match at position i of T iff both types of mismatches are
0.

Ruta (UIUC) CS473 52 Spring 2018 52 / 55

Reduction of pattern matching to shifted products

Type 2 mismatches: C [i] counts # j ’s where P[j] = 1 and
T [i + j] = 0, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 2 mismatches:

B[j] = (1− T [j]) (flip the bits)
If P[j] = 0 or ∗ set A[j] = 0, if P[j] = 1 set A[j] = 1.

There is a match at position i of T iff both types of mismatches are
0.

Ruta (UIUC) CS473 52 Spring 2018 52 / 55

Reduction of pattern matching to shifted products

Type 2 mismatches: C [i] counts # j ’s where P[j] = 1 and
T [i + j] = 0, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 2 mismatches:

B[j] = (1− T [j]) (flip the bits)
If P[j] = 0 or ∗ set A[j] = 0, if P[j] = 1 set A[j] = 1.

There is a match at position i of T iff both types of mismatches are
0.

Ruta (UIUC) CS473 52 Spring 2018 52 / 55

Reduction of pattern matching to shifted products

Type 2 mismatches: C [i] counts # j ’s where P[j] = 1 and
T [i + j] = 0, when P is aligned with T at T [i].

Example:
T = 10110010 . . .
P = 010

Finding Type 2 mismatches:

B[j] = (1− T [j]) (flip the bits)
If P[j] = 0 or ∗ set A[j] = 0, if P[j] = 1 set A[j] = 1.

There is a match at position i of T iff both types of mismatches are
0.

Ruta (UIUC) CS473 52 Spring 2018 52 / 55

Running time analysis

Reducing to shift product is O(n).

Need to compute two convolutions with polynomials of size n
and m. Total run time is O(n log n) (here we assume m ≤ n).

Can reduce to O(n log m) as follows. Break text T into
O(n/m) overlapping substrings of length 2m each and compute
matches of P with these substrings. Total time is O(n log m).

Exercise: work out the details of this improvement.

Ruta (UIUC) CS473 53 Spring 2018 53 / 55

Running time analysis

Reducing to shift product is O(n).

Need to compute two convolutions with polynomials of size n
and m. Total run time is O(n log n) (here we assume m ≤ n).

Can reduce to O(n log m) as follows. Break text T into
O(n/m) overlapping substrings of length 2m each and compute
matches of P with these substrings. Total time is O(n log m).

Exercise: work out the details of this improvement.

Ruta (UIUC) CS473 53 Spring 2018 53 / 55

General Alphabet

If Σ is not binary replace each character α ∈ Σ by its binary
representation. Need s = dlog |Σ|e bits. Running time increases to
O(n log m log s).

Can remove dependence on s and obtain O(n log m) time where
m = |P| using more advanced ideas and/or randomization.

Ruta (UIUC) CS473 54 Spring 2018 54 / 55

Trivia

FFT algorithm is used billions of times everyday: image/sound
processing – jpeg, mp3, MRI scans, etc.

Even your brain is running FFT!

A fun video on FFT applications:
https://www.youtube.com/watch?v=aqa6vyGSdos

Ruta (UIUC) CS473 55 Spring 2018 55 / 55

https://www.youtube.com/watch?v=aqa6vyGSdos

	Polynomials, Convolutions and FFT
	Polynomials
	Computing with Polynomials

	Convolutions
	Definition

	Fast Fourier Transforms
	Polynomial Representations
	Basic Ideas
	Complex Roots of Unity
	FFT Algorithm

	Inverse Fourier Transform
	Application to String Matching

