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Part I

Shortest Paths with Negative Length
Edges
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Single-Source Shortest Paths with Negative Edge

Lengths

Single-Source Shortest
Path Problems
Input: A directed graph
G = (V ,E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find
shortest path from s to t.

2 Given node s find shortest
path from s to all other
nodes.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.
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Shortest Paths and Negative Cycles

Given G = (V ,E) with edge lengths and s, t. Suppose

1 G has a negative length cycle C , and

2 s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

1 undefined, that is −∞
OR

2 the length of a shortest simple path from s to t. NP-Hard!
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Alterantively: Finding Shortest Walks

Given a graph G = (V ,E):

1 A path is a sequence of distinct vertices v1, v2, . . . , vk such
that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1.

2 A walk is a sequence of vertices v1, v2, . . . , vk such that
(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v .

1 If there is a walk from u to v that contains negative length cycle
then dist(u, v) = −∞

2 Else there is a path with at most n − 1 edges whose length is
equal to the length of a shortest walk and dist(u, v) is finite

Helpful to think about walks
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V ,E) with edge lengths (could be
negative). For edge e = (u, v), `(e) = `(u, v) is its length.

Questions:

1 Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

2 Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

3 Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths
In Undirected Graphs

Note: Negative cycle detection in undirected graph can not be
reduced to directed gaph by bi-directing edges, why?

Problem can be solved efficiently in undirected graphs but algorithms
are different and more involved than those for directed graphs. Need
min-cost matchings which we will see later in the course.
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Why Negative Lengths?

Several Applications

1 Shortest path problems useful in modeling many situations — in
some negative lenths are natural

2 Negative length cycle can be used to find arbitrage opportunities
in currency trading

3 Important sub-routine in algorithms for more general problem:
minimum-cost flow
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What are the distances computed by Dijkstra’s

algorithm?

1

1
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1

x −5

The distance as computed
by Dijkstra algorithm start-
ing from s:

(A) s = 0, x = 5,
y = 1, z = 0.

(B) s = 0, x = 1,
y = 2, z = 5.

(C) s = 0, x = 5,
y = 1, z = 2.

(D) IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm is based on the assumption
that if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk
then dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for
non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s → v1 → v2 → . . .→ vk is a shortest path from s to vk then for
1 ≤ i < k :

1 s → v1 → v2 → . . .→ vi is a shortest path from s to vi

2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k . Holds true
only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other
strategies.
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Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G . (Remove nodes
unreachable from s).

d(v , k): shortest walk length from s to v using at most k edges
(∞ if none exists).

Recursion for d(v , k):

d(v , k) = min

{
minu∈V (d(u, k − 1) + `(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.
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Example
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A Basic Lemma

Lemma
Assume s can reach all nodes in G = (V ,E). Then,

1 There is a negative length cycle in G iff
d(v , n) < d(v , n − 1) for some node v ∈ V .

2 If there is no negative length cycle in G then
dist(s, v) = d(v , n − 1) for all v ∈ V .
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Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)
If d(v , n) < d(v , n − 1)

Return ‘‘Negative Cycle in G’’

Running time: O(mn) Space: O(m + n2)
Space can be reduced to O(m + n).
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Bellman-Ford with Space Saving

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ In(v) do
d(v) = min{d(v), d(u) + `(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ In(v) do

if (d(v) > d(u) + `(u, v))
Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d(v)

Exercise: Show that this algorithm achieves same result.
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Correctness of the Bellman-Ford Algorithm

Via induction show: For each v , d(v , k) is the length of a
shortest walk from s to v with at most k hops.

And for each 1 ≤ k ≤ n − 1, d(v , k) ≤ d(v , k − 1).

Lemma
Assume s can reach all nodes in G = (V ,E). Then,

1 There is a negative length cycle in G iff
d(v , n) < d(v , n − 1) for some node v ∈ V .

2 If there is no negative length cycle in G then
dist(s, v) = d(v , n − 1) for all v ∈ V .

Exercise: Prove algorithm correctness from above two.
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Proof of Lemma

Proposition
Suppose there is no negative length cycle in G then
d(v , h) ≥ d(v , n − 1) for all h ≥ n and for all v ∈ V .

Proof.

By contradiction. Suppose d(v , h) < d(v , n − 1) for some h ≥ n
and some v . Choose smallest such h. Let P be a s-v walk with h
edges of length d(v , h). Since h ≥ n, P has a cycle C . Since
`(C) ≥ 0, the walk P ′ obtained by removing C from P satisfies:
`(P ′) ≤ `(P)= d(v , h) < d(v , n − 1). If P ′ has ≤ n − 1 edges
then d(v , n − 1) ≤ `(P ′) < d(v , n − 1) which is a contradiction.

Therefor P ′ has h′ ≥ n edges but P ′ is a shorter walk than P with
`(P ′) < d(v , n − 1) contradicting choice of h.
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Proof of Lemma cond

Proposition
If G has a negative length cycle then there is some v such that
d(v , n) < d(v , n − 1).

Proof.

Suppose not. Let C = v1 → v2 → . . .→ vh → v1 be negative
length cycle reachable from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h
since C is reachable from s. By assumption d(v , n) ≥ d(v , n − 1)
for all v ∈ C ; this means
d(vi , n − 1) ≤ d(vi−1, n − 1) + `(vi−1, vi) for 2 ≤ i ≤ h and
d(v1, n − 1) ≤ d(vn, n − 1) + `(vn, v1). Adding up all these
inequalities results in the inequality 0 ≤ `(C) which contradicts the
assumption that `(C) < 0.
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Proof of Lemma contd

Exercise: Finish proof of lemma using the two propositions.
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

For each v the d(v) can only get smaller as algorithm proceeds.

If d(v) becomes smaller it is because we found a vertex u such
that d(v) > d(u) + `(u, v) and we update
d(v) = d(u) + `(u, v). That is, we found a shorter path to v
through u.

For each v have a prev(v) pointer and update it to point to u
if v finds a shorter path via u.

At end of algorithm prev(v) pointers give a shortest path tree
oriented towards the source s.
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

1 Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

2 Run Bellman-Ford |V | times, one from each node u?
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Negative Cycle Detection

1 Add a new node s ′ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s ′ will fill find a negative
length cycle if there is one. Exercise: why does this work?

2 Negative cycle detection can be done with one Bellman-Ford
invocation.
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Part II

Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1 No cycles and hence no negative length cycles! Hence can find
shortest paths even for negative edge weights.

2 Can order nodes using topological sort.
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Algorithm for DAGs

1 Want to find shortest paths from s. Ignore nodes not reachable
from s.

2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn, since no path from s to vi uses any of them.

2 can find shortest paths in topological sort order.
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Algorithm for DAGs

for i = 1 to n do
d(s, vi ) =∞

d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj ) in Adj(vi ) do

d(s, vj ) = min{d(s, vj ), d(s, vi ) + `(vi , vj )}

return d(s, ·) values computed

Correctness by induction: If by the end of i th round d(s, vj) is the
shortest path length from s to vj for each 1 ≤ i ≤ j , then after
(i + 1)th round d(s, vi+1) is the shortest path length from s to
vi+1. Use observation in the previous slide.
Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.
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Part III

All Pairs Shortest Paths
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge

lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).

Ruta (UIUC) CS473 34 Spring 2018 34 / 45



Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).

Ruta (UIUC) CS473 34 Spring 2018 34 / 45



All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge

lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).
Θ
(
n4
)

if m = Ω
(
n2
)
.

Can we do better?
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2 Arbitrary edge lengths: O(n2m).
Θ
(
n4
)

if m = Ω
(
n2
)
.

Can we do better?
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All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).
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dist(i , j , 1) =

9
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dist(i , j , 3) =

5
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For the following graph, dist(i, j, 2) is...

i
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1
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(A) 9

(B) 10

(C) 11

(D) 12

(E) 15
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

Base case: dist(i , j , 0) = `(i , j) if (i , j) ∈ E , otherwise∞
Correctness: If i → j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of intermediate nodes

If dist(k, k, k − 1) < 0 then G has a negative length cycle
containing k .

Now if i can reach k and k can reach j then dist(i , j , k) = −∞.

Therefore, recursion below is valid only if dist(k, k, k − 1) ≥ 0.

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

We can detect this during the algorithm or wait till the end.
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j) (* `(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i , j , k) = min

{
dist(i , j , k − 1),

dist(i , k, k − 1) + dist(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Running Time: Θ(n3), Space: Θ(n3).
Correctness: via induction and recursive definition
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

1 Create a n × n array Next that stores the next vertex on
shortest path for each pair of vertices

2 With array Next, for any pair of given vertices i , j can compute
a shortest path in O(n) time.
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Floyd-Warshall Algorithm
Finding the Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j)
(* `(i , j) =∞ if (i , j) not edge, 0 if i = j *)

Next(i , j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

dist(i , j , k) = dist(i , j , k − 1)
if (dist(i , j , k − 1) > dist(i , k, k − 1) + dist(k, j , k − 1)) then

dist(i , j , k) = dist(i , k, k − 1) + dist(k, j , k − 1)
Next(i , j) = k

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G
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Floyd-Warshall Algorithm
Finding the Paths

Exercise: Given Next array and any two vertices i , j describe an
O(n) algorithm to find a i -j shortest path.
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Johnson’s Algorithm

Bellman-Ford gives O(nm) time algorithm to solve
single-source shortest paths when G has no negative lengths.

To compute APSP running Bellman-Ford n times will give a run
time of O(n2m).

However, if G has no negative length cycle, after computing
shortest paths from one vertex using Bellman-Ford, one can use
“reduced” costs to convert the graph into one with non-negative
edge lengths. And then one can run n Dijkstra’s on this new
graphs to solve APSP. This gives a run time of
O(nm + n2 log n) for APSP.

See notes for more details.
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Summary of results on shortest paths

Single Source Shortest Paths

No negative edges Dijkstra O(n log n + m)
Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O
(
n2 log n + nm

)
No negative cycles n * Bellman Ford O

(
n2m

)
= O

(
n4
)

No negative cycles BF + n * Dijkstra O
(
nm + n2 log n

)
No negative cycles Floyd-Warshall O

(
n3
)

Unweighted Matrix multiplication O(n2.38), O(n2.58)
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