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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:
A recursion that when memoized leads to an efficient algorithm.

Key Questions:

Given a recursive algorithm, how do we analyze the complexity
when it is memoized?

How do we recognize whether a problem admits a dynamic
programming based efficient algorithm?

How do we further optimize time and space of a dynamic
programming based algorithm?
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Part I

Edit Distance
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Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY
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Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a sequence M of pairs (i , j) such that each
index appears exactly once, and there is no “crossing”: if
(i , j), ..., (i ′, j ′) then i < i ′ and j < j ′. One of i or j could be
empty, in which case no comparision.

In the above example, this is
M = {(1, 1), (2, 2), (3, 3), ( , 4), (4, 5)}.
Cost of an alignment: the number of mismatched columns.
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Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Edit Distance
Basic observation

Let X = αx and Y = βy
α, β: strings. x and y single characters.
Possible alignments between X and Y

α x
β y or

α x
βy or

αx
β y

Observation
Prefixes must have optimal alignment!

EDIST (X ,Y ) = min


EDIST (α, β) + [x 6= y ]

1 + EDIST (α,Y )

1 + EDIST (X , β)
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Subproblems and Recurrence

Each subproblem corresponds to a prefix of X and a prefix of Y

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


[xi 6= yj ] + Opt(i − 1, j − 1),

1 + Opt(i − 1, j),
1 + Opt(i , j − 1)

Base Cases: Opt(i , 0) = i and Opt(0, j) = j

X = x1x2 . . . xm and Y = y1y2 . . . yn, we wish to compute
Opt(m, n).
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Matrix and DAG of Computation
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Figure: Iterative algorithm in previous slide computes values in row order.
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Computing in column order to save space
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Figure: M(i , j) only depends on previous column values. Keep only two
columns and compute in column order.
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Optimizing Space

1 Recall

M(i , j) = min


[xi 6= yj ] + M(i − 1, j − 1),

1 + M(i − 1, j),
1 + M(i , j − 1)

2 Entries in j th column only depend on (j − 1)st column and
earlier entries in j th column

3 Only store the current column and the previous column reusing
space; N(i , 0) stores M(i , j − 1) and N(i , 1) stores M(i , j)
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Space Efficient Algorithm

for all i do N[i , 0] = i
for j = 1 to n do

N[0, 1] = j (* corresponds to M(0, j) *)

for i = 1 to m do

N[i , 1] = min


[xi 6= y] + N[i − 1, 0]

1 + N[i − 1, 1]

1 + N[i , 0]
for i = 1 to m do

Copy N[i , 0] = N[i , 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)
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Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Can find minimum edit distance in O(m + n) space and O(mn)
time.

Previous Exercise: Find an optimum alignment in O(mn) space
and time.

Today: Finding an optimum alignment and cost in O(m + n) space
and O(mn) time.
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Divide and Conquer Approach

Fix an optimum alignment between X [1..m] and Y [1..n]

In this optimum alignment X [1..m
2

] is aligned with Y [1..h] for some
h where 1 ≤ h ≤ n. (Need not be unique but we can choose
smallest such h). Call this Half(X ,Y )

Suppose we can find h = Half(X ,Y ) in time O(mn) time and
O(m + n) space, that is, in the same time as finding Opt(m, n)
the optimum value of the alignment between X and Y .
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Divide and Conquer Algorithm

Linear-Space-Alignment(X [1..m],Y [1..n])
If m = 1 use basic algorithm in O(n) time and O(n) space

If n = 1 us basic algorithm in O(m) time and O(n) space

Compute h = Half(X ,Y ) in O(mn) time and O(m + n) space

Linear-Space-Alignment(X [1..m/2],Y [1..h])
Linear-Space-Alignment(X [m/2 + 1..m],Y [h + 1..n])
Output concatenation of the two alignments

Correctness: Clear based on definition of Half(X ,Y ).

Recurrences:
Time bound T (m, n) = T (m/2, h) + T (m/2, n − h) + cmn
Space bound S(m, n) = max{S(m

2 , h), S(m
2 , n− h), c(m + n)}+ O(1)

Claim: T (m, n) = O(mn) and S(m, n) = O(m + n).
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Proof: Time bound

T (m, n) ≤


cm if n ≤ 1

cn if m ≤ 1

T (m/2, h) + T (m/2, n − h) + cmn otherwise

Claim: T (m, n) ≤ 2cmn by induction on m + n.

Inductive step:

T (m, n) ≤ 2chm/2 + 2c(n − h)m/2 + cmn
≤ 2cnm
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Proof: Space bound

S(m, n) ≤
cm if n ≤ 1

cn if m ≤ 1

max{S(m/2, h), S(m/2, n − h), c(m + n)}+ O(1)

We can reuse space for computing Half(X ,Y ). And storing the
alignment can be accounted separatly as O(m + n).

Claim: S(m, n) ≤ c(m + n) + O(log m).
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Computing Half(X,Y)

Want to find h such that

EDIST(X ,Y ) = EDIST(X [1..m/2],Y [1..h])

+ EDIST(X [(m/2 + 1)..m],Y [(h + 1)..n])

Instead comput for all k where 1 ≤ k ≤ n,
(1) EDIST(X [1..m/2],Y [1..k]) &
(2) EDIST(X [(m/2 + 1)..m],Y [(k + 1)..n]

And compute h as
mink(EDIST(X [1..m2 ],Y [1..k])+EDIST(X [(m

2 +1)..m],Y [(k+1)..n])

Ruta (UIUC) CS473 18 Spring 2018 18 / 34



Computing Half(X,Y)

Want to find h such that

EDIST(X ,Y ) = EDIST(X [1..m/2],Y [1..h])

+ EDIST(X [(m/2 + 1)..m],Y [(h + 1)..n])

Instead comput for all k where 1 ≤ k ≤ n,
(1) EDIST(X [1..m/2],Y [1..k]) &
(2) EDIST(X [(m/2 + 1)..m],Y [(k + 1)..n]

And compute h as
mink(EDIST(X [1..m2 ],Y [1..k])+EDIST(X [(m

2 +1)..m],Y [(k+1)..n])

Ruta (UIUC) CS473 18 Spring 2018 18 / 34



Computing Half(X,Y)

Want to find h such that

EDIST(X ,Y ) = EDIST(X [1..m/2],Y [1..h])

+ EDIST(X [(m/2 + 1)..m],Y [(h + 1)..n])

Instead comput for all k where 1 ≤ k ≤ n,
(1) EDIST(X [1..m/2],Y [1..k]) &
(2) EDIST(X [(m/2 + 1)..m],Y [(k + 1)..n]

And compute h as
mink(EDIST(X [1..m2 ],Y [1..k])+EDIST(X [(m

2 +1)..m],Y [(k+1)..n])

Ruta (UIUC) CS473 18 Spring 2018 18 / 34



Computing Half(X,Y)

(1) Compute for all 1 ≤ k ≤ n, EDIST(X [1..m
2

],Y [1..k])

Claim: All values available if we compute
EDIST(X [1..m

2
],Y [1..n]) which we can do in O(mn) time.

If M is the resulting table, what entries? M(m
2
, k) for all

1 ≤ k ≤ n.

Can we do it in O(m + n) space?

Yes! Use the space saving trick in computing edit distance and store
the last row!
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Computing Half(X,Y)

(2) Compute for all 1 ≤ k ≤ n,
EDIST(X [(m

2
+ 1)..m],Y [(k + 1)..n])

If we compute EDIST(X [(m/2 + 1)..m],Y [1..n]) we get the
values EDIST(X [(m/2 + 1)..m],Y [1..k]) for 1 ≤ k ≤ n which is
not what we quite want.

Observation: EDIST(X ,Y ) = EDIST(reverse(X ), reverse(Y )).

Hence compute EDIST(A,B) where A is reverse of
X [(m/2 + 1)..m] and B is reverse of Y [1..n] and this will give all
the desired values.

Ruta (UIUC) CS473 20 Spring 2018 20 / 34



Computing Half(X,Y)

(2) Compute for all 1 ≤ k ≤ n,
EDIST(X [(m

2
+ 1)..m],Y [(k + 1)..n])

If we compute EDIST(X [(m/2 + 1)..m],Y [1..n]) we get the
values EDIST(X [(m/2 + 1)..m],Y [1..k]) for 1 ≤ k ≤ n which is
not what we quite want.

Observation: EDIST(X ,Y ) = EDIST(reverse(X ), reverse(Y )).

Hence compute EDIST(A,B) where A is reverse of
X [(m/2 + 1)..m] and B is reverse of Y [1..n] and this will give all
the desired values.

Ruta (UIUC) CS473 20 Spring 2018 20 / 34



Computing Half(X,Y)

(2) Compute for all 1 ≤ k ≤ n,
EDIST(X [(m

2
+ 1)..m],Y [(k + 1)..n])

If we compute EDIST(X [(m/2 + 1)..m],Y [1..n]) we get the
values EDIST(X [(m/2 + 1)..m],Y [1..k]) for 1 ≤ k ≤ n which is
not what we quite want.

Observation: EDIST(X ,Y ) = EDIST(reverse(X ), reverse(Y )).

Hence compute EDIST(A,B) where A is reverse of
X [(m/2 + 1)..m] and B is reverse of Y [1..n] and this will give all
the desired values.

Ruta (UIUC) CS473 20 Spring 2018 20 / 34



Computing Half(X,Y)

(2) Compute for all 1 ≤ k ≤ n,
EDIST(X [(m

2
+ 1)..m],Y [(k + 1)..n])

If we compute EDIST(X [(m/2 + 1)..m],Y [1..n]) we get the
values EDIST(X [(m/2 + 1)..m],Y [1..k]) for 1 ≤ k ≤ n which is
not what we quite want.

Observation: EDIST(X ,Y ) = EDIST(reverse(X ), reverse(Y )).

Hence compute EDIST(A,B) where A is reverse of
X [(m/2 + 1)..m] and B is reverse of Y [1..n] and this will give all
the desired values.

Ruta (UIUC) CS473 20 Spring 2018 20 / 34



Part II

Longest Increasing Subsequence
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Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.
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Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9, 1

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Recursive Algorithm

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = 1+ maxi :A[i ]<A[n] LISEnding(A[1..i ])

LISEnding(A[1..n]) = maxi :A[i ]<A[n] (1 + LISEnding(A[1..i ]))
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Example

Sequence: A[1..8] = 6, 3, 5, 2, 7, 8, 1, 9
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Recursive Algorithm

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i ] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i ])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i ])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)
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Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why?

Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.
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Iterative Algorithm via Memoization

Compute the values LIS ending alg(A[1..i ]) iteratively in a bottom
up fashion.

LIS ending alg(A[1..n]):
Array L[1..n] (* L[i ] = value of LIS ending alg(A[1..i ]) *)

for i = 1 to n do
L[i ] = 1
for j = 1 to i − 1 do

if (A[j ] < A[i ]) do
L[i ] = max(L[i ], 1 + L[j ])

return L

LIS(A[1..n]):
L = LIS ending alg(A[1..n])
return the maximum value in L
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Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i ] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i ] = 1
for j = 1 to i − 1 do

if (A[j ] < A[i ]) do

L[i ] = max(L[i ], 1 + L[j ])
m = max(m, L[i ])

return m

Correctness: Via induction following the recursion
Running time: O(n2)
Space: Θ(n)
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Improving run time

Want to improve run time to O(n log n) from O(n2). How?

Idea: Use data structures to improve run-time of computing

LISEnding(i) = max
j<i :A[j ]<A[i ]

1 + LISEnding(j)

When computing LISEnding(i) we want to focus only on
indices j such that A[j ] < A[i ]
We need to store LISEnding(j) with each value A[j ] stored in
the data structure
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Augmented Balanced Binary Search Tree

Assume for simplicity that a1, a2, . . . , an are distinct numbers.

We maintain a dynamic balanced binary search tree T which has
only a1, . . . , ai−1 when LISEnding(i) is getting considered.

We can search for ai in T to obtain a set of subtrees such that
each subtree has only numbers smaller than ai . Precisely what
we want, and takes O(log n) time.

We store with the root of each subtree of T the max
LISEnding value for all indices represented in that subtree.

Updating tree after computing LISEnding(i) requires inserting
ai into the tree T and also updating the LISEnding values.
Can be done in O(log n) time. Thus, overall O(n log n) time.
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Example
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A better algorithm

Using only two arrays. Elegant, fast. See Wikipedia article https:

//en.wikipedia.org/wiki/Longest_increasing_subsequence

Not a first-cut solution.
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