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Outline

Randomization is very powerful
How do you play R-P-S?

Calculating insurance.

Our goal
Basics of randomization – probability space, expectation, events,
random variables, etc.

Randomized Algorithms – Two types

Las Vegas
Monte Carlo

Randomized Quick Sort
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Part I

Introduction to Randomized
Algorithms
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Randomized Algorithms

Input x Output y
Deterministic Algorithm

Input x Output yr
Randomized Algorithm

random bits r
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Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:

1 Multiply A and B and check if equal to C .

2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).
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Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
1 Pick a random n × 1 vector r .
2 Return the answer of the equality ABr = Cr .
3 Running time? O(n2)!

Theorem
If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.
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Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53



Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53



Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53



Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53



Average case analysis vs Randomized algorithms

Average case analysis:

1 Fix a deterministic algorithm.

2 Assume inputs comes from a probability distribution.

3 Analyze the algorithm’s average performance over the
distribution over inputs.

Randomized algorithms:

1 Input is arbitrary (worst case).

2 Algorithm uses random bits, and therefore on each input the
behavior of the algorithm is random.

3 Analyze algorithms average performance over any given (worst
case) input where the average is over the random bits that the
algorithm uses.
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Part II

Basics of Discrete Probability
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Discrete Probability

We restrict attention to finite probability spaces.

Definition
A discrete probability space is a pair (Ω, Pr) consists of finite set Ω
of elementary events and function Pr[:] Ω→ [0, 1] which assigns
a probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

Example

An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T ] = 1/2.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i ] = 1/6 for
1 ≤ i ≤ 6.
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Events

Definition
Given a probability space (Ω, Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A ⊆ Ω, denoted by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \ A
frequently denoted by Ā.

Example

A pair of independent dice. Ω = {(i , j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Event A: the sum of the two numbers on the dice is even.
Then A =

{
(i , j) ∈ Ω

∣∣∣ (i + j) is even
}

.

Pr[A] = |A|/36 = 1/2.
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Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT ] = Pr[HT ] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.
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Union bound
The probability of the union of two events, is no bigger than the sum of their
probabilities.

Lemma
For any two events E and F, we have that

Pr
[
E ∪ F

]
≤ Pr

[
E
]

+ Pr
[
F
]
.

Proof.
Consider E and F to be a collection of elmentery events (which they
are). We have

Pr
[
E ∪ F

]
=

∑
x∈E∪F

Pr[x]

≤
∑
x∈E

Pr[x] +
∑
x∈F

Pr[x] = Pr
[
E
]

+ Pr
[
F
]
.
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Random Variables

Definition (Random Variable)

Given a probability space (Ω, Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω→ R.

Definition (Expectation)

For a random variable X over a probability space (Ω, Pr) the
expectation of X is defined as

∑
ω∈Ω Pr[ω] X (ω). In other words,

the expectation is the average value of X according to the
probabilities given by Pr[·].
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Expectation

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i ] = 1/6 for
each i ∈ Ω.

1 X : Ω→ R where X (i) = i mod 2 ∈ {0, 1}.

Then

E[X ] =
∑6

i=1 Pr[i ] · X (i) = 1
6

∑6
i=1 X (i) = 1/2.

2 Y : Ω→ R where Y (i) = i 2. Then

E[Y ] =
∑6

i=1
1
6
· i 2 = 91/6.
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Expected number of vertices?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G with
probability 1/2. Compute the expected number of vertices in H.

(A) n/2.

(B) n/4.

(C) m/2.

(D) m/4.

(E) none of the above.
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Expected number of vertices is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # vertices in H as per ω = # 1s in ω.

E[X ] =
∑

ω∈Ω Pr[ω] X (ω)
=

∑
ω∈Ω

1/2nX (ω)
= 1/2n

∑n
k=0

(n
k

)
k

= 1/2n(2n n
2
)

= n/2
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Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

(A) n/2.

(B) n/4.

(C) m/2.

(D) m/4.

(E) none of the above.
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Expected number of edges is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # edges present in H as per ω = ??

How to compute E[X ]?
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Indicator Random Variables

Definition
A binary random variable is one that takes on values in {0, 1}.

Special type of random variables that are quite useful.

Definition
Given a probability space (Ω, Pr) and an event A ⊆ Ω the
indicator random variable XA is a binary random variable where
XA(ω) = 1 if ω ∈ A and XA(ω) = 0 if ω 6∈ A.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i ] = 1/6 for
each i ∈ Ω. Let A be the even that i is divisible by 3, i.e.,
A = {3, 6}. Then XA(i) = 1 if i ∈ {3, 6} and 0 otherwise.
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Expectation

Proposition

For an indicator variable XA, E[XA] = Pr[A].

Proof.

E[XA] =
∑
ω∈Ω

XA(ω) Pr[ω]

=
∑
ω∈A

1 · Pr[ω] +
∑

ω∈Ω\A

0 · Pr[ω]

=
∑
ω∈A

Pr[ω]

= Pr[A] .
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Linearity of Expectation

Lemma
Let X ,Y be two random variables (not necessarily independent) over
a probability space (Ω, Pr). Then E[X + Y ] = E[X ] + E[Y ].

Proof.

E[X + Y ] =
∑
ω∈Ω

Pr[ω] (X (ω) + Y (ω))

=
∑
ω∈Ω

Pr[ω] X (ω) +
∑
ω∈Ω

Pr[ω] Y (ω) = E[X ] + E[Y ] .

Corollary

E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi ].
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Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

Event Ae = edge e ∈ E is present in H.

Pr
[
Ae=(u,v)

]
= Pr[u and v both are present] =

Pr[u is present] · Pr[v is present] = 1
2
· 1

2
= 1

4
.

XAe indicator random variables, then E[XAe ] = Pr[Ae].

Let X =
∑

e∈E XAe (Number of edges in H)

E[X ] = E

[∑
e∈E

XAe

]
=
∑
e∈E

E[XAe ] =
∑
e∈E

Pr[Ae] =
m
4

It is important to setup random variables carefully.
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Expected number of triangles?

Let G = (V, E) be a graph with n vertices and m edges. Assume G
has t triangles (i.e., a triangle is a simple cycle with three vertices).
Let H be the graph resulting from deleting independently each vertex
of G with probability 1/2. The expected number of triangles in H is

(A) t/2.

(B) t/4.

(C) t/8.

(D) t/16.

(E) none of the above.
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Independent Random Variables

Definition
Random variables X ,Y are said to be independent if

∀x, y ∈ R, Pr[X = x ∧ Y = y ] = Pr[X = x] Pr[Y = y ]

.

Examples

Two independent un-biased coin flips: Ω = {HH,HT ,TH,TT}.
X = 1 if first coin is H else 0. Y = 1 if second coin is H else
0. Independent.

X = #H , Y = #T . Dependent. Why?
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Independent Random Variables

Lemma
If X and Y are independent then E[X · Y ] = E[X ] · E[Y ]

Proof.

E[X · Y ] =
∑
ω∈Ω

Pr[ω] (X (ω) · Y (ω))

=
∑

x,y∈R

Pr[X = x ∧ Y = y ] (x · y)

=
∑

x,y∈R

Pr[X = x] · Pr[Y = y ] · x · y

= (
∑
x∈R

Pr[X = x] x)(
∑
y∈R

Pr[Y = y ] y) = E[X ] E[Y ]
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Types of Randomized Algorithms

Typically one encounters the following types:

1 Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

2 Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

3 Algorithms whose running time and output may both be random.
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Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
1 Let Q(x) be the time for Q to run on input x of length |x|.
2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x :|x|=n

Q(x).

Randomized algorithm R for a problem Π:
1 Let R(x) be the time for Q to run on input x of length |x|.
2 R(x) is a random variable: depends on random bits used by R.
3 E[R(x)] is the expected running time for R on x
4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x :|x|=n

E[R(x)] .
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Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:

1 Let M(x) be the time for M to run on input x of length |x|.
For Monte Carlo, assumption is that run time is deterministic.

2 Let Pr[x] be the probability that M is correct on x .

3 Pr[x] is a random variable: depends on random bits used by M .

4 Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x :|x|=n

Pr[x] .
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Part III

Why does randomization help?
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Ping and find.

Consider a deterministic algorithm A that is trying to find an element
in an array X of size n. At every step it is allowed to ask the value of
one cell in the array, and the adversary is allowed after each such
ping, to shuffle elements around in the array in any way it seems fit.
For the best possible deterministic algorithm the number of rounds it
has to play this game till it finds the required element is

(A) O(1)

(B) O(n)

(C) O(n log n)

(D) O(n2)

(E) ∞.
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Ping and find randomized.

Consider an algorithm randFind that is trying to find an element in
an array X of size n. At every step it asks the value of one random
cell in the array, and the adversary is allowed after each such ping, to
shuffle elements around in the array in any way it seems fit. This
algorithm would stop in expectation after

(A) O(1)

(B) O(log n)

(C) O(n)

(D) O(n2)

(E) ∞.

steps.
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Abundance of witnesses

Consider the problem of finding an “approximate median” of an
unsorted array A[1..n]: an element of A with rank between n/4 and
3n/4.

Finding an approximate median is not any easier than a proper
median.

n/2 elements of A qualify as approximate medians and hence a
random element is good with probability 1/2!
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Part IV

Randomized Quick Sort
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QuickSort

Deterministic QuickSort
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Ruta (UIUC) CS473 36 Spring 2018 36 / 53



QuickSort

Deterministic QuickSort
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Ruta (UIUC) CS473 36 Spring 2018 36 / 53



Randomized Quicksort

Recall: Deterministic QuickSort can take Ω(n2) time to sort array
of size n.

Theorem
Randomized QuickSort sorts a given array of length n in
O(n log n) expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.
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Randomized QuickSort

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.
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Analysis

What events to count?

Number of Comparisions.

What is the probability space?

All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define?
What are the events of the algorithm?
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Analysis via Recurrence

1 Given array A of n distinct numbers.

2 Q(A) : number of comparisons of randomized QuickSort on A.
Note that Q(A) is a random variable.

3 Xi : Indicator random variable, which is set to 1 if pivot is of
rank i in A, else zero.

Let Ai
left and Ai

right be the corresponding left and right subarrays.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi ] = Pr[pivot has rank i ] = 1/n.
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Independence of Random Variables

Lemma
Random variables Xi is independent of random variables Q(Ai

left) as
well as Q(Ai

right), i.e.

E
[
Xi · Q(Ai

left)
]

= E[Xi ] E
[
Q(Ai

left)
]

E
[
Xi · Q(Ai

right)
]

= E[Xi ] E
[
Q(Ai

right)
]

Proof.
This is because the algorithm, while recursing on Q(Ai

left) and
Q(Ai

right) uses new random coin tosses that are independent of the
coin tosses used to decide the first pivot. Only the latter decides
value of Xi .
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Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)
By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

n∑
i=1

E[Xi ]
(

E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .
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right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .
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Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i))

with base case T (1) = 0.

Lemma
T (n) = O(n log n).

Proof.
(Guess and) Verify by induction.
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Part V

Slick analysis of QuickSort
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A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

1 For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

2 Xij is the indicator random variable for Rij . That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

7 5 9 1 3 4 8 6
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With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78
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Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5 to 8 is Pr[R4,7].
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.
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Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.

2 If pivot too large (say 9 [rank 8]):

7 5 9 1 3 4 8 67 5 9 1 3 4 8 6
=⇒ 7 5 1 3 4 8 6 9

Decision if to compare 5 to 8 moved to subproblem.
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

2 If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

3 If pivot in between the two numbers (say 6 [rank 5]):

7 5 9 1 3 4 8 6
=⇒ 75 91 3 4 6 8

5 and 8 will never be compared to each other.
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

Conclusion:
Ri ,j happens if and only if:

i th or j th ranked element is the first pivot out of
i th to j th ranked elements.

Pr[Ri ,j ] = Pr [i th or j th ranked element is the pivot |
pivot has rank in {i , i + 1 . . . , j − 1, j}]

There are k = j − i + 1 relevant elements.

Pr
[
Ri ,j

]
=

2

k
=

2

j − i + 1
.
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A Slick Analysis of QuickSort

Question: What is Pr[Rij ]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...
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A Slick Analysis of QuickSort
Continued...

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be sort of A. Let
S = {ai , ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that
it is ai or aj is exactly 2/|S| = 2/(j − i + 1) since the pivot is
chosen uniformly at random from the array.
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A Slick Analysis of QuickSort
Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij ] =
∑

1≤i<j≤n

Pr[Rij ] .

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53



A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
=

∑
1≤i<j≤n

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53



A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53



A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1

=
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53



A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
=

n−1∑
i=1

n∑
j=i+1

2

j − i + 1
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53



A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53



A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1
= 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

Ruta (UIUC) CS473 52 Spring 2018 52 / 53



A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1
= 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

≤ 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

Hk =
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Where do I get random bits?

Question: Are true random bits available in practice?

1 Buy them!

2 CPUs use physical phenomena to generate random bits.

3 Can use pseudo-random bits or semi-random bits from nature.
Several fundamental unresolved questions in complexity theory
on this topic. Beyond the scope of this course.

4 In practice pseudo-random generators work quite well in many
applications.

5 The model is interesting to think in the abstract and is very
useful even as a theoretical construct. One can derandomize
randomized algorithms to obtain deterministic algorithms.
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