
CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

Ruta (UIUC) CS473 1 Spring 2018 1 / 53

CS 473: Algorithms, Spring 2018

Introduction to Randomized
Algorithms: QuickSort
Lecture 7
Feb 6, 2018

Most slides are courtesy Prof. Chekuri
Ruta (UIUC) CS473 2 Spring 2018 2 / 53

Outline

Randomization is very powerful
How do you play R-P-S?

Calculating insurance.

Our goal
Basics of randomization – probability space, expectation, events,
random variables, etc.

Randomized Algorithms – Two types

Las Vegas
Monte Carlo

Randomized Quick Sort

Ruta (UIUC) CS473 3 Spring 2018 3 / 53

Outline

Randomization is very powerful
How do you play R-P-S?
Calculating insurance.

Our goal
Basics of randomization – probability space, expectation, events,
random variables, etc.

Randomized Algorithms – Two types

Las Vegas
Monte Carlo

Randomized Quick Sort

Ruta (UIUC) CS473 3 Spring 2018 3 / 53

Outline

Randomization is very powerful
How do you play R-P-S?
Calculating insurance.

Our goal
Basics of randomization – probability space, expectation, events,
random variables, etc.

Randomized Algorithms – Two types

Las Vegas
Monte Carlo

Randomized Quick Sort

Ruta (UIUC) CS473 3 Spring 2018 3 / 53

Part I

Introduction to Randomized
Algorithms

Ruta (UIUC) CS473 4 Spring 2018 4 / 53

Randomized Algorithms

Input x Output y
Deterministic Algorithm

Input x Output yr
Randomized Algorithm

random bits r

Ruta (UIUC) CS473 5 Spring 2018 5 / 53

Randomized Algorithms

Input x Output y
Deterministic Algorithm

Input x Output yr
Randomized Algorithm

random bits r

Ruta (UIUC) CS473 5 Spring 2018 5 / 53

Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:

1 Multiply A and B and check if equal to C .

2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).

Ruta (UIUC) CS473 6 Spring 2018 6 / 53

Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:

1 Multiply A and B and check if equal to C .

2 Running time?

O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).

Ruta (UIUC) CS473 6 Spring 2018 6 / 53

Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:

1 Multiply A and B and check if equal to C .

2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).

Ruta (UIUC) CS473 6 Spring 2018 6 / 53

Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
1 Pick a random n × 1 vector r .
2 Return the answer of the equality ABr = Cr .
3 Running time? O(n2)!

Theorem
If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
1 Pick a random n × 1 vector r .
2 Return the answer of the equality ABr = Cr .
3 Running time?

O(n2)!

Theorem
If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
1 Pick a random n × 1 vector r .
2 Return the answer of the equality ABr = Cr .
3 Running time? O(n2)!

Theorem
If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Example: Verifying Matrix Multiplication

Problem
Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
1 Pick a random n × 1 vector r .
2 Return the answer of the equality ABr = Cr .
3 Running time? O(n2)!

Theorem
If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized, i.e.,
polynomial identity testing.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Average case analysis vs Randomized algorithms

Average case analysis:

1 Fix a deterministic algorithm.

2 Assume inputs comes from a probability distribution.

3 Analyze the algorithm’s average performance over the
distribution over inputs.

Randomized algorithms:

1 Input is arbitrary (worst case).

2 Algorithm uses random bits, and therefore on each input the
behavior of the algorithm is random.

3 Analyze algorithms average performance over any given (worst
case) input where the average is over the random bits that the
algorithm uses.

Ruta (UIUC) CS473 9 Spring 2018 9 / 53

Average case analysis vs Randomized algorithms

Average case analysis:

1 Fix a deterministic algorithm.

2 Assume inputs comes from a probability distribution.

3 Analyze the algorithm’s average performance over the
distribution over inputs.

Randomized algorithms:

1 Input is arbitrary (worst case).

2 Algorithm uses random bits, and therefore on each input the
behavior of the algorithm is random.

3 Analyze algorithms average performance over any given (worst
case) input where the average is over the random bits that the
algorithm uses.

Ruta (UIUC) CS473 9 Spring 2018 9 / 53

Part II

Basics of Discrete Probability

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

Discrete Probability

We restrict attention to finite probability spaces.

Definition
A discrete probability space is a pair (Ω, Pr) consists of finite set Ω
of elementary events and function Pr[:] Ω→ [0, 1] which assigns
a probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

Example

An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

Ruta (UIUC) CS473 11 Spring 2018 11 / 53

Discrete Probability

We restrict attention to finite probability spaces.

Definition
A discrete probability space is a pair (Ω, Pr) consists of finite set Ω
of elementary events and function Pr[:] Ω→ [0, 1] which assigns
a probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

Example

An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

Ruta (UIUC) CS473 11 Spring 2018 11 / 53

Events

Definition
Given a probability space (Ω, Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A ⊆ Ω, denoted by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \ A
frequently denoted by Ā.

Example

A pair of independent dice. Ω = {(i , j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Event A: the sum of the two numbers on the dice is even.
Then A =

{
(i , j) ∈ Ω

∣∣∣ (i + j) is even
}

.

Pr[A] = |A|/36 = 1/2.

Ruta (UIUC) CS473 12 Spring 2018 12 / 53

Events

Definition
Given a probability space (Ω, Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A ⊆ Ω, denoted by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \ A
frequently denoted by Ā.

Example

A pair of independent dice. Ω = {(i , j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.

Event A: the sum of the two numbers on the dice is even.
Then A =

{
(i , j) ∈ Ω

∣∣∣ (i + j) is even
}

.

Pr[A] = |A|/36 = 1/2.

Ruta (UIUC) CS473 12 Spring 2018 12 / 53

Events

Definition
Given a probability space (Ω, Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A ⊆ Ω, denoted by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \ A
frequently denoted by Ā.

Example

A pair of independent dice. Ω = {(i , j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Event A: the sum of the two numbers on the dice is even.
Then A =

{
(i , j) ∈ Ω

∣∣∣ (i + j) is even
}

.

Pr[A] = |A|/36 = 1/2.

Ruta (UIUC) CS473 12 Spring 2018 12 / 53

Events

Definition
Given a probability space (Ω, Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A ⊆ Ω, denoted by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \ A
frequently denoted by Ā.

Example

A pair of independent dice. Ω = {(i , j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Event A: the sum of the two numbers on the dice is even.
Then A =

{
(i , j) ∈ Ω

∣∣∣ (i + j) is even
}

.

Pr[A] = |A|/36 = 1/2.

Ruta (UIUC) CS473 12 Spring 2018 12 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.

Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =

1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =

1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =

3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =

1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Independent Events

Definition
Given a probability space (Ω, Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT ,HT ,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A : the first coin is heads. B : second coin is tails.
Pr[A] =1/2, Pr[B] = 1/2, Pr[A ∩ B] =1/4. independent.

2 A : both are not tails. B : second coin is heads.
Pr[A] =3/4, Pr[B] = 1/2, Pr[A ∩ B] =1/2. dependent.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Union bound
The probability of the union of two events, is no bigger than the sum of their
probabilities.

Lemma
For any two events E and F, we have that

Pr
[
E ∪ F

]
≤ Pr

[
E
]

+ Pr
[
F
]
.

Proof.
Consider E and F to be a collection of elmentery events (which they
are). We have

Pr
[
E ∪ F

]
=

∑
x∈E∪F

Pr[x]

≤
∑
x∈E

Pr[x] +
∑
x∈F

Pr[x] = Pr
[
E
]

+ Pr
[
F
]
.

Ruta (UIUC) CS473 14 Spring 2018 14 / 53

Random Variables

Definition (Random Variable)

Given a probability space (Ω, Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω→ R.

Definition (Expectation)

For a random variable X over a probability space (Ω, Pr) the
expectation of X is defined as

∑
ω∈Ω Pr[ω] X (ω). In other words,

the expectation is the average value of X according to the
probabilities given by Pr[·].

Ruta (UIUC) CS473 15 Spring 2018 15 / 53

Random Variables

Definition (Random Variable)

Given a probability space (Ω, Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω→ R.

Definition (Expectation)

For a random variable X over a probability space (Ω, Pr) the
expectation of X is defined as

∑
ω∈Ω Pr[ω] X (ω). In other words,

the expectation is the average value of X according to the
probabilities given by Pr[·].

Ruta (UIUC) CS473 15 Spring 2018 15 / 53

Expectation

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
each i ∈ Ω.

1 X : Ω→ R where X (i) = i mod 2 ∈ {0, 1}.

Then

E[X] =
∑6

i=1 Pr[i] · X (i) = 1
6

∑6
i=1 X (i) = 1/2.

2 Y : Ω→ R where Y (i) = i 2. Then

E[Y] =
∑6

i=1
1
6
· i 2 = 91/6.

Ruta (UIUC) CS473 16 Spring 2018 16 / 53

Expectation

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
each i ∈ Ω.

1 X : Ω→ R where X (i) = i mod 2 ∈ {0, 1}. Then

E[X] =
∑6

i=1 Pr[i] · X (i) = 1
6

∑6
i=1 X (i) = 1/2.

2 Y : Ω→ R where Y (i) = i 2. Then

E[Y] =
∑6

i=1
1
6
· i 2 = 91/6.

Ruta (UIUC) CS473 16 Spring 2018 16 / 53

Expectation

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
each i ∈ Ω.

1 X : Ω→ R where X (i) = i mod 2 ∈ {0, 1}. Then

E[X] =
∑6

i=1 Pr[i] · X (i) = 1
6

∑6
i=1 X (i) = 1/2.

2 Y : Ω→ R where Y (i) = i 2.

Then

E[Y] =
∑6

i=1
1
6
· i 2 = 91/6.

Ruta (UIUC) CS473 16 Spring 2018 16 / 53

Expectation

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
each i ∈ Ω.

1 X : Ω→ R where X (i) = i mod 2 ∈ {0, 1}. Then

E[X] =
∑6

i=1 Pr[i] · X (i) = 1
6

∑6
i=1 X (i) = 1/2.

2 Y : Ω→ R where Y (i) = i 2. Then

E[Y] =
∑6

i=1
1
6
· i 2 = 91/6.

Ruta (UIUC) CS473 16 Spring 2018 16 / 53

Expected number of vertices?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G with
probability 1/2. Compute the expected number of vertices in H.

(A) n/2.

(B) n/4.

(C) m/2.

(D) m/4.

(E) none of the above.

Ruta (UIUC) CS473 17 Spring 2018 17 / 53

Expected number of vertices is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # vertices in H as per ω = # 1s in ω.

E[X] =
∑

ω∈Ω Pr[ω] X (ω)
=

∑
ω∈Ω

1/2nX (ω)
= 1/2n

∑n
k=0

(n
k

)
k

= 1/2n(2n n
2
)

= n/2

Ruta (UIUC) CS473 18 Spring 2018 18 / 53

Expected number of vertices is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # vertices in H as per ω = # 1s in ω.

E[X] =
∑

ω∈Ω Pr[ω] X (ω)
=

∑
ω∈Ω

1/2nX (ω)
= 1/2n

∑n
k=0

(n
k

)
k

= 1/2n(2n n
2
)

= n/2

Ruta (UIUC) CS473 18 Spring 2018 18 / 53

Expected number of vertices is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # vertices in H as per ω = # 1s in ω.

E[X] =
∑

ω∈Ω Pr[ω] X (ω)
=

∑
ω∈Ω

1/2nX (ω)
= 1/2n

∑n
k=0

(n
k

)
k

= 1/2n(2n n
2
)

= n/2

Ruta (UIUC) CS473 18 Spring 2018 18 / 53

Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

(A) n/2.

(B) n/4.

(C) m/2.

(D) m/4.

(E) none of the above.

Ruta (UIUC) CS473 19 Spring 2018 19 / 53

Expected number of edges is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # edges present in H as per ω = ??

How to compute E[X]?

Ruta (UIUC) CS473 20 Spring 2018 20 / 53

Expected number of edges is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # edges present in H as per ω = ??

How to compute E[X]?

Ruta (UIUC) CS473 20 Spring 2018 20 / 53

Expected number of edges is:

Probability Space

Ω = {0, 1}n. For ω ∈ {0, 1}n, ωv = 1 if vertex v is present
in H, else is zero.

For each ω ∈ Ω, Pr[ω] = 1
2n .

X (ω) = # edges present in H as per ω = ??

How to compute E[X]?

Ruta (UIUC) CS473 20 Spring 2018 20 / 53

Indicator Random Variables

Definition
A binary random variable is one that takes on values in {0, 1}.

Special type of random variables that are quite useful.

Definition
Given a probability space (Ω, Pr) and an event A ⊆ Ω the
indicator random variable XA is a binary random variable where
XA(ω) = 1 if ω ∈ A and XA(ω) = 0 if ω 6∈ A.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
each i ∈ Ω. Let A be the even that i is divisible by 3, i.e.,
A = {3, 6}. Then XA(i) = 1 if i ∈ {3, 6} and 0 otherwise.

Ruta (UIUC) CS473 21 Spring 2018 21 / 53

Indicator Random Variables

Definition
A binary random variable is one that takes on values in {0, 1}.

Special type of random variables that are quite useful.

Definition
Given a probability space (Ω, Pr) and an event A ⊆ Ω the
indicator random variable XA is a binary random variable where
XA(ω) = 1 if ω ∈ A and XA(ω) = 0 if ω 6∈ A.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
each i ∈ Ω. Let A be the even that i is divisible by 3, i.e.,
A = {3, 6}. Then XA(i) = 1 if i ∈ {3, 6} and 0 otherwise.

Ruta (UIUC) CS473 21 Spring 2018 21 / 53

Indicator Random Variables

Definition
A binary random variable is one that takes on values in {0, 1}.

Special type of random variables that are quite useful.

Definition
Given a probability space (Ω, Pr) and an event A ⊆ Ω the
indicator random variable XA is a binary random variable where
XA(ω) = 1 if ω ∈ A and XA(ω) = 0 if ω 6∈ A.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
each i ∈ Ω. Let A be the even that i is divisible by 3, i.e.,
A = {3, 6}. Then XA(i) = 1 if i ∈ {3, 6} and 0 otherwise.

Ruta (UIUC) CS473 21 Spring 2018 21 / 53

Expectation

Proposition

For an indicator variable XA, E[XA] = Pr[A].

Proof.

E[XA] =
∑
ω∈Ω

XA(ω) Pr[ω]

=
∑
ω∈A

1 · Pr[ω] +
∑

ω∈Ω\A

0 · Pr[ω]

=
∑
ω∈A

Pr[ω]

= Pr[A] .

Ruta (UIUC) CS473 22 Spring 2018 22 / 53

Linearity of Expectation

Lemma
Let X ,Y be two random variables (not necessarily independent) over
a probability space (Ω, Pr). Then E[X + Y] = E[X] + E[Y].

Proof.

E[X + Y] =
∑
ω∈Ω

Pr[ω] (X (ω) + Y (ω))

=
∑
ω∈Ω

Pr[ω] X (ω) +
∑
ω∈Ω

Pr[ω] Y (ω) = E[X] + E[Y] .

Corollary

E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi].

Ruta (UIUC) CS473 23 Spring 2018 23 / 53

Linearity of Expectation

Lemma
Let X ,Y be two random variables (not necessarily independent) over
a probability space (Ω, Pr). Then E[X + Y] = E[X] + E[Y].

Proof.

E[X + Y] =
∑
ω∈Ω

Pr[ω] (X (ω) + Y (ω))

=
∑
ω∈Ω

Pr[ω] X (ω) +
∑
ω∈Ω

Pr[ω] Y (ω) = E[X] + E[Y] .

Corollary

E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi].

Ruta (UIUC) CS473 23 Spring 2018 23 / 53

Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

Event Ae = edge e ∈ E is present in H.

Pr
[
Ae=(u,v)

]
= Pr[u and v both are present] =

Pr[u is present] · Pr[v is present] = 1
2
· 1

2
= 1

4
.

XAe indicator random variables, then E[XAe] = Pr[Ae].

Let X =
∑

e∈E XAe (Number of edges in H)

E[X] = E

[∑
e∈E

XAe

]
=
∑
e∈E

E[XAe] =
∑
e∈E

Pr[Ae] =
m
4

It is important to setup random variables carefully.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

Event Ae = edge e ∈ E is present in H.

Pr
[
Ae=(u,v)

]
= Pr[u and v both are present] =

Pr[u is present] · Pr[v is present] = 1
2
· 1

2
= 1

4
.

XAe indicator random variables, then E[XAe] = Pr[Ae].

Let X =
∑

e∈E XAe (Number of edges in H)

E[X] = E

[∑
e∈E

XAe

]
=
∑
e∈E

E[XAe] =
∑
e∈E

Pr[Ae] =
m
4

It is important to setup random variables carefully.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

Event Ae = edge e ∈ E is present in H.

Pr
[
Ae=(u,v)

]
= Pr[u and v both are present] =

Pr[u is present] · Pr[v is present] = 1
2
· 1

2
= 1

4
.

XAe indicator random variables, then E[XAe] = Pr[Ae].

Let X =
∑

e∈E XAe (Number of edges in H)

E[X] = E

[∑
e∈E

XAe

]
=
∑
e∈E

E[XAe] =
∑
e∈E

Pr[Ae] =
m
4

It is important to setup random variables carefully.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

Event Ae = edge e ∈ E is present in H.

Pr
[
Ae=(u,v)

]
= Pr[u and v both are present] =

Pr[u is present] · Pr[v is present] = 1
2
· 1

2
= 1

4
.

XAe indicator random variables, then E[XAe] = Pr[Ae].

Let X =
∑

e∈E XAe (Number of edges in H)

E[X] = E

[∑
e∈E

XAe

]
=
∑
e∈E

E[XAe] =
∑
e∈E

Pr[Ae] =
m
4

It is important to setup random variables carefully.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

Event Ae = edge e ∈ E is present in H.

Pr
[
Ae=(u,v)

]
= Pr[u and v both are present] =

Pr[u is present] · Pr[v is present] = 1
2
· 1

2
= 1

4
.

XAe indicator random variables, then E[XAe] = Pr[Ae].

Let X =
∑

e∈E XAe (Number of edges in H)

E[X] = E

[∑
e∈E

XAe

]
=
∑
e∈E

E[XAe] =
∑
e∈E

Pr[Ae] =
m
4

It is important to setup random variables carefully.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from independently deleting every vertex of G
with probability 1/2. The expected number of edges in H is

Event Ae = edge e ∈ E is present in H.

Pr
[
Ae=(u,v)

]
= Pr[u and v both are present] =

Pr[u is present] · Pr[v is present] = 1
2
· 1

2
= 1

4
.

XAe indicator random variables, then E[XAe] = Pr[Ae].

Let X =
∑

e∈E XAe (Number of edges in H)

E[X] = E

[∑
e∈E

XAe

]
=
∑
e∈E

E[XAe] =
∑
e∈E

Pr[Ae] =
m
4

It is important to setup random variables carefully.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Expected number of triangles?

Let G = (V, E) be a graph with n vertices and m edges. Assume G
has t triangles (i.e., a triangle is a simple cycle with three vertices).
Let H be the graph resulting from deleting independently each vertex
of G with probability 1/2. The expected number of triangles in H is

(A) t/2.

(B) t/4.

(C) t/8.

(D) t/16.

(E) none of the above.

Ruta (UIUC) CS473 25 Spring 2018 25 / 53

Independent Random Variables

Definition
Random variables X ,Y are said to be independent if

∀x, y ∈ R, Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y]

.

Examples

Two independent un-biased coin flips: Ω = {HH,HT ,TH,TT}.
X = 1 if first coin is H else 0. Y = 1 if second coin is H else
0. Independent.

X = #H , Y = #T . Dependent. Why?

Ruta (UIUC) CS473 26 Spring 2018 26 / 53

Independent Random Variables

Definition
Random variables X ,Y are said to be independent if

∀x, y ∈ R, Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y]

.

Examples

Two independent un-biased coin flips: Ω = {HH,HT ,TH,TT}.
X = 1 if first coin is H else 0. Y = 1 if second coin is H else
0.

Independent.

X = #H , Y = #T . Dependent. Why?

Ruta (UIUC) CS473 26 Spring 2018 26 / 53

Independent Random Variables

Definition
Random variables X ,Y are said to be independent if

∀x, y ∈ R, Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y]

.

Examples

Two independent un-biased coin flips: Ω = {HH,HT ,TH,TT}.
X = 1 if first coin is H else 0. Y = 1 if second coin is H else
0. Independent.

X = #H , Y = #T . Dependent. Why?

Ruta (UIUC) CS473 26 Spring 2018 26 / 53

Independent Random Variables

Definition
Random variables X ,Y are said to be independent if

∀x, y ∈ R, Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y]

.

Examples

Two independent un-biased coin flips: Ω = {HH,HT ,TH,TT}.
X = 1 if first coin is H else 0. Y = 1 if second coin is H else
0. Independent.

X = #H , Y = #T .

Dependent. Why?

Ruta (UIUC) CS473 26 Spring 2018 26 / 53

Independent Random Variables

Definition
Random variables X ,Y are said to be independent if

∀x, y ∈ R, Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y]

.

Examples

Two independent un-biased coin flips: Ω = {HH,HT ,TH,TT}.
X = 1 if first coin is H else 0. Y = 1 if second coin is H else
0. Independent.

X = #H , Y = #T . Dependent. Why?

Ruta (UIUC) CS473 26 Spring 2018 26 / 53

Independent Random Variables

Lemma
If X and Y are independent then E[X · Y] = E[X] · E[Y]

Proof.

E[X · Y] =
∑
ω∈Ω

Pr[ω] (X (ω) · Y (ω))

=
∑

x,y∈R

Pr[X = x ∧ Y = y] (x · y)

=
∑

x,y∈R

Pr[X = x] · Pr[Y = y] · x · y

= (
∑
x∈R

Pr[X = x] x)(
∑
y∈R

Pr[Y = y] y) = E[X] E[Y]

Ruta (UIUC) CS473 27 Spring 2018 27 / 53

Types of Randomized Algorithms

Typically one encounters the following types:

1 Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

2 Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

3 Algorithms whose running time and output may both be random.

Ruta (UIUC) CS473 28 Spring 2018 28 / 53

Types of Randomized Algorithms

Typically one encounters the following types:

1 Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

2 Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

3 Algorithms whose running time and output may both be random.

Ruta (UIUC) CS473 28 Spring 2018 28 / 53

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
1 Let Q(x) be the time for Q to run on input x of length |x|.
2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x :|x|=n

Q(x).

Randomized algorithm R for a problem Π:
1 Let R(x) be the time for Q to run on input x of length |x|.
2 R(x) is a random variable: depends on random bits used by R.
3 E[R(x)] is the expected running time for R on x
4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x :|x|=n

E[R(x)] .

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
1 Let Q(x) be the time for Q to run on input x of length |x|.
2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x :|x|=n

Q(x).

Randomized algorithm R for a problem Π:
1 Let R(x) be the time for Q to run on input x of length |x|.
2 R(x) is a random variable: depends on random bits used by R.
3 E[R(x)] is the expected running time for R on x

4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x :|x|=n

E[R(x)] .

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
1 Let Q(x) be the time for Q to run on input x of length |x|.
2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x :|x|=n

Q(x).

Randomized algorithm R for a problem Π:
1 Let R(x) be the time for Q to run on input x of length |x|.
2 R(x) is a random variable: depends on random bits used by R.
3 E[R(x)] is the expected running time for R on x
4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x :|x|=n

E[R(x)] .

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:

1 Let M(x) be the time for M to run on input x of length |x|.
For Monte Carlo, assumption is that run time is deterministic.

2 Let Pr[x] be the probability that M is correct on x .

3 Pr[x] is a random variable: depends on random bits used by M .

4 Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x :|x|=n

Pr[x] .

Ruta (UIUC) CS473 30 Spring 2018 30 / 53

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:

1 Let M(x) be the time for M to run on input x of length |x|.
For Monte Carlo, assumption is that run time is deterministic.

2 Let Pr[x] be the probability that M is correct on x .

3 Pr[x] is a random variable: depends on random bits used by M .

4 Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x :|x|=n

Pr[x] .

Ruta (UIUC) CS473 30 Spring 2018 30 / 53

Part III

Why does randomization help?

Ruta (UIUC) CS473 31 Spring 2018 31 / 53

Ping and find.

Consider a deterministic algorithm A that is trying to find an element
in an array X of size n. At every step it is allowed to ask the value of
one cell in the array, and the adversary is allowed after each such
ping, to shuffle elements around in the array in any way it seems fit.
For the best possible deterministic algorithm the number of rounds it
has to play this game till it finds the required element is

(A) O(1)

(B) O(n)

(C) O(n log n)

(D) O(n2)

(E) ∞.

Ruta (UIUC) CS473 32 Spring 2018 32 / 53

Ping and find randomized.

Consider an algorithm randFind that is trying to find an element in
an array X of size n. At every step it asks the value of one random
cell in the array, and the adversary is allowed after each such ping, to
shuffle elements around in the array in any way it seems fit. This
algorithm would stop in expectation after

(A) O(1)

(B) O(log n)

(C) O(n)

(D) O(n2)

(E) ∞.

steps.

Ruta (UIUC) CS473 33 Spring 2018 33 / 53

Abundance of witnesses

Consider the problem of finding an “approximate median” of an
unsorted array A[1..n]: an element of A with rank between n/4 and
3n/4.

Finding an approximate median is not any easier than a proper
median.

n/2 elements of A qualify as approximate medians and hence a
random element is good with probability 1/2!

Ruta (UIUC) CS473 34 Spring 2018 34 / 53

Abundance of witnesses

Consider the problem of finding an “approximate median” of an
unsorted array A[1..n]: an element of A with rank between n/4 and
3n/4.

Finding an approximate median is not any easier than a proper
median.

n/2 elements of A qualify as approximate medians and hence a
random element is good with probability 1/2!

Ruta (UIUC) CS473 34 Spring 2018 34 / 53

Part IV

Randomized Quick Sort

Ruta (UIUC) CS473 35 Spring 2018 35 / 53

QuickSort

Deterministic QuickSort
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Ruta (UIUC) CS473 36 Spring 2018 36 / 53

QuickSort

Deterministic QuickSort
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Ruta (UIUC) CS473 36 Spring 2018 36 / 53

Randomized Quicksort

Recall: Deterministic QuickSort can take Ω(n2) time to sort array
of size n.

Theorem
Randomized QuickSort sorts a given array of length n in
O(n log n) expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Ruta (UIUC) CS473 37 Spring 2018 37 / 53

Randomized Quicksort

Recall: Deterministic QuickSort can take Ω(n2) time to sort array
of size n.

Theorem
Randomized QuickSort sorts a given array of length n in
O(n log n) expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Ruta (UIUC) CS473 37 Spring 2018 37 / 53

Randomized Quicksort

Recall: Deterministic QuickSort can take Ω(n2) time to sort array
of size n.

Theorem
Randomized QuickSort sorts a given array of length n in
O(n log n) expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Ruta (UIUC) CS473 37 Spring 2018 37 / 53

Randomized QuickSort

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Ruta (UIUC) CS473 38 Spring 2018 38 / 53

Analysis

What events to count?

Number of Comparisions.

What is the probability space?

All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define?
What are the events of the algorithm?

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Analysis

What events to count?

Number of Comparisions.

What is the probability space?

All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define?
What are the events of the algorithm?

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Analysis

What events to count?

Number of Comparisions.

What is the probability space?

All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define?
What are the events of the algorithm?

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Analysis

What events to count?

Number of Comparisions.

What is the probability space?

All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define?
What are the events of the algorithm?

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Analysis via Recurrence

1 Given array A of n distinct numbers.

2 Q(A) : number of comparisons of randomized QuickSort on A.
Note that Q(A) is a random variable.

3 Xi : Indicator random variable, which is set to 1 if pivot is of
rank i in A, else zero.

Let Ai
left and Ai

right be the corresponding left and right subarrays.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi] = Pr[pivot has rank i] = 1/n.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Analysis via Recurrence

1 Given array A of n distinct numbers.

2 Q(A) : number of comparisons of randomized QuickSort on A.
Note that Q(A) is a random variable.

3 Xi : Indicator random variable, which is set to 1 if pivot is of
rank i in A, else zero.

Let Ai
left and Ai

right be the corresponding left and right subarrays.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi] = Pr[pivot has rank i] = 1/n.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Analysis via Recurrence

1 Given array A of n distinct numbers.

2 Q(A) : number of comparisons of randomized QuickSort on A.
Note that Q(A) is a random variable.

3 Xi : Indicator random variable, which is set to 1 if pivot is of
rank i in A, else zero.

Let Ai
left and Ai

right be the corresponding left and right subarrays.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi] = Pr[pivot has rank i] = 1/n.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Analysis via Recurrence

1 Given array A of n distinct numbers.

2 Q(A) : number of comparisons of randomized QuickSort on A.
Note that Q(A) is a random variable.

3 Xi : Indicator random variable, which is set to 1 if pivot is of
rank i in A, else zero.

Let Ai
left and Ai

right be the corresponding left and right subarrays.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi] = Pr[pivot has rank i] = 1/n.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Independence of Random Variables

Lemma
Random variables Xi is independent of random variables Q(Ai

left) as
well as Q(Ai

right), i.e.

E
[
Xi · Q(Ai

left)
]

= E[Xi] E
[
Q(Ai

left)
]

E
[
Xi · Q(Ai

right)
]

= E[Xi] E
[
Q(Ai

right)
]

Proof.
This is because the algorithm, while recursing on Q(Ai

left) and
Q(Ai

right) uses new random coin tosses that are independent of the
coin tosses used to decide the first pivot. Only the latter decides
value of Xi .

Ruta (UIUC) CS473 41 Spring 2018 41 / 53

Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)
By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

n∑
i=1

E[Xi]
(

E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 42 Spring 2018 42 / 53

Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)

By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

n∑
i=1

E[Xi]
(

E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 42 Spring 2018 42 / 53

Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)
By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

n∑
i=1

E[Xi]
(

E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 42 Spring 2018 42 / 53

Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)
By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

n∑
i=1

E[Xi]
(

E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 42 Spring 2018 42 / 53

Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 43 Spring 2018 43 / 53

Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 43 Spring 2018 43 / 53

Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i))

with base case T (1) = 0.

Lemma
T (n) = O(n log n).

Proof.
(Guess and) Verify by induction.

Ruta (UIUC) CS473 44 Spring 2018 44 / 53

Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i))

with base case T (1) = 0.

Lemma
T (n) = O(n log n).

Proof.
(Guess and) Verify by induction.

Ruta (UIUC) CS473 44 Spring 2018 44 / 53

Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i))

with base case T (1) = 0.

Lemma
T (n) = O(n log n).

Proof.
(Guess and) Verify by induction.

Ruta (UIUC) CS473 44 Spring 2018 44 / 53

Part V

Slick analysis of QuickSort

Ruta (UIUC) CS473 45 Spring 2018 45 / 53

A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

1 For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

2 Xij is the indicator random variable for Rij . That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.

Ruta (UIUC) CS473 46 Spring 2018 46 / 53

A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

1 For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

2 Xij is the indicator random variable for Rij . That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.

Ruta (UIUC) CS473 46 Spring 2018 46 / 53

A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

1 For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

2 Xij is the indicator random variable for Rij . That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.

Ruta (UIUC) CS473 46 Spring 2018 46 / 53

A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

7 5 9 1 3 4 8 6

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5 to 8 is Pr[R4,7].

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.

2 If pivot too large (say 9 [rank 8]):

7 5 9 1 3 4 8 67 5 9 1 3 4 8 6
=⇒ 7 5 1 3 4 8 6 9

Decision if to compare 5 to 8 moved to subproblem.

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

Ruta (UIUC) CS473 48 Spring 2018 48 / 53

A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

2 If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

Ruta (UIUC) CS473 48 Spring 2018 48 / 53

A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

2 If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

3 If pivot in between the two numbers (say 6 [rank 5]):

7 5 9 1 3 4 8 6
=⇒ 75 91 3 4 6 8

5 and 8 will never be compared to each other.

Ruta (UIUC) CS473 48 Spring 2018 48 / 53

A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

Conclusion:
Ri ,j happens if and only if:

i th or j th ranked element is the first pivot out of
i th to j th ranked elements.

Pr[Ri ,j] = Pr [i th or j th ranked element is the pivot |
pivot has rank in {i , i + 1 . . . , j − 1, j}]

There are k = j − i + 1 relevant elements.

Pr
[
Ri ,j

]
=

2

k
=

2

j − i + 1
.

Ruta (UIUC) CS473 49 Spring 2018 49 / 53

A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

Conclusion:
Ri ,j happens if and only if:

i th or j th ranked element is the first pivot out of
i th to j th ranked elements.

Pr[Ri ,j] = Pr [i th or j th ranked element is the pivot |
pivot has rank in {i , i + 1 . . . , j − 1, j}]

There are k = j − i + 1 relevant elements.

Pr
[
Ri ,j

]
=

2

k
=

2

j − i + 1
.

Ruta (UIUC) CS473 49 Spring 2018 49 / 53

A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}

Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.

Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.

Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be sort of A. Let
S = {ai , ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that
it is ai or aj is exactly 2/|S| = 2/(j − i + 1) since the pivot is
chosen uniformly at random from the array.

Ruta (UIUC) CS473 51 Spring 2018 51 / 53

A Slick Analysis of QuickSort
Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij] =
∑

1≤i<j≤n

Pr[Rij] .

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
=

∑
1≤i<j≤n

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1

=
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
=

n−1∑
i=1

n∑
j=i+1

2

j − i + 1
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1
= 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1
= 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

≤ 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

Hk =
∑k

i=1
1
i = Θ(log k)

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
j−i+1

.

E
[
Q(A)

]
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1
= 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

≤ 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

≤ 2nHn = O(n log n)

Hk =
∑k

i=1
1
i = Θ(log k)

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

Where do I get random bits?

Question: Are true random bits available in practice?

1 Buy them!

2 CPUs use physical phenomena to generate random bits.

3 Can use pseudo-random bits or semi-random bits from nature.
Several fundamental unresolved questions in complexity theory
on this topic. Beyond the scope of this course.

4 In practice pseudo-random generators work quite well in many
applications.

5 The model is interesting to think in the abstract and is very
useful even as a theoretical construct. One can derandomize
randomized algorithms to obtain deterministic algorithms.

Ruta (UIUC) CS473 53 Spring 2018 53 / 53

	Introduction to Randomized Algorithms
	Introduction

	Basics of Discrete Probability
	Analyzing Randomized Algorithms

	Why does randomization help?
	Randomized Quick Sort
	Randomized Quick Sort

	Slick analysis of QuickSort

