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Part I

Analysis of QuickSort
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Recall: Randomized QuickSort

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Theorem
Expected running time of Randomized QuickSort on an array of size
n is O(n log n).
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Analysis via Recurrence

1 A: Given array with n distinct numbers.

2 Q(A) : number of comparisons of randomized QuickSort on A.
Note that Q(A) is a random variable.

3 Xi : Random variable indicating if picked pivot has rank i in A.

Ai
left and Ai

right be the corresponding left and right subarrays.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Exactly one non-zero Xi . E[Xi ] = Pr[pivot has rank i ] = 1/n.
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Independence of Random Variables

Lemma
Random variables Xi is independent of random variables Q(Ai

left) as
well as Q(Ai

right), i.e.

E
[
Xi · Q(Ai

left)
]

= E[Xi ] E
[
Q(Ai

left)
]

E
[
Xi · Q(Ai

right)
]

= E[Xi ] E
[
Q(Ai

right)
]

Proof.
This is because the algorithm, while recursing on Q(Ai

left) and
Q(Ai

right) uses new random coin tosses that are independent of the
coin tosses used to decide the first pivot. Only the latter decides
value of Xi .
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Analysis via Recurrence

T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)

By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

∑n
i=1 E[Xi ]

(
E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

≤ n +
∑n

i=1
1
n (T (i − 1) + T (n − i))
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Analysis via Recurrence

T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Note that above holds for any A of size n. Therefore

T (n) = max
A:|A|=n

E[Q(A)] ≤

n +
n∑

i=1

1

n
(T (i − 1) + T (n − i)) .
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Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i))

with base case T (1) = 0.

Lemma
T (n) = O(n log n).

Proof.
(Guess and) Verify by induction.
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Part II

Slick analysis of QuickSort
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A Slick Analysis of QuickSort

Q(A) : number of comparisons done on input array A
1 Rank of an element is its position in the sorted A.

2 Rij : event that rank i element is compared with rank j element,
for 1 ≤ i < j < n.

3 Xij : the indicator random variable for Rij . That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

7 5 9 1 3 4 8 6
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With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5 to 8 is Pr[R4,7].
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.
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Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.

2 If pivot too large (say 9 [rank 8]):

7 5 9 1 3 4 8 67 5 9 1 3 4 8 6
=⇒ 7 5 1 3 4 8 6 9

Decision if to compare 5 to 8 moved to subproblem.
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

2 If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

3 If pivot in between the two numbers (say 6 [rank 5]):

7 5 9 1 3 4 8 6
=⇒ 75 91 3 4 6 8

5 and 8 will never be compared to each other.

Ruta (UIUC) CS473 14 Spring 2018 14 / 42



A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

Conclusion:
Ri ,j happens if and only if:

i th or j th ranked element is the first pivot out of
i th to j th ranked elements.

Pr[Ri ,j ] = Pr [i th or j th ranked element is the pivot |
pivot has rank in {i , i + 1 . . . , j − 1, j}]

There are k = j − i + 1 relevant elements.

Pr
[
Ri ,j

]
=

2

k
=

2

j − i + 1
.
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A Slick Analysis of QuickSort

Question: What is Pr[Rij ]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...
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A Slick Analysis of QuickSort
Continued...

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.
Let a1, . . . , ai , . . . , aj , . . . , an be sort of A. Let
S = {ai , ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that
it is ai or aj is exactly 2/|S| = 2/(j − i + 1) since the pivot is
chosen uniformly at random from the array.
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A Slick Analysis of QuickSort
Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij ] =
∑

1≤i<j≤n

Pr[Rij ] .

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1
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A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
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1

j − i + 1
= 2

n−1∑
i=1

n−i+1∑
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1

∆

≤ 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

Hk =
∑k

i=1
1
i = Θ(log k)
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Part III

Inequalities
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p.

(n
k

)
1/2n.
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Massive randomness.. Is not that random.

This is known as concentration of mass.
This is a very special case of the law of large numbers.
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Side note...
Law of large numbers (weakest form)...

Informal statement of law of large numbers
For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.
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Massive randomness.. Is not that random.

Intuitive conclusion
Randomized algorithm are unpredictable in the tactical level, but very
predictable in the strategic level.

Use of well known inequalities in analysis.
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Randomized QuickSort: A possible analysis

Analysis
Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

Suppose Pr[Q ≥ 10nlgn] ≤ c . Also we know that Q ≤ n2.

E[Q] ≤ (10n log n)(1− c) + n2c

Question:
How to find c , or in other words bound Pr[Q ≥ 10n log n]?
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Markov’s Inequality

Markov’s inequality
Let X be a non-negative random variable over a probability space
(Ω,Pr). For any a > 0,

Pr[X ≥ a] ≤ E[X ]

a

Proof:

E[X ] =
∑
ω∈Ω X (ω) Pr[ω]

≥
∑
ω∈Ω, X (ω)≥a X (ω) Pr[ω]

≥ a
∑
ω∈Ω, X (ω)≥a Pr[ω]

= a Pr[X ≥ a]
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Markov’s Inequality: Proof by Picture
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Example: Balls in a bin

n black and white balls in a bin.

We wish to estimate the fraction of black balls. Lets say it is p∗.

An approach: Draw k balls with replacement. If B are black
then output p = B

k .

Question
How large k needs to be before our estimated value p is close to p∗?
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Example: Balls in a bin

A rough estimate through Markov’s inequality.

Lemma

For any k ≥ 1 and p = B/k, Pr[p ≥ 2p∗] ≤ 1
2

Proof.
For each 1 ≤ i ≤ k define random variable Xi , which is 1 if i th

ball is black, otherwise 0.

E[Xi ] = Pr[Xi = 1] = p∗.
B =

∑k
i=1 Xi , then E[B] =

∑k
i=1 E[Xi ] = kp∗.

Markov’s inequality gives, Pr[p ≥ 2p∗] =

Pr

[
B
k
≥ 2p∗

]
= Pr[B ≥ 2kp∗] = Pr[B ≥ 2 E[B]] ≤

1

2
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Chebyshev’s Inequality: Variance

Variance
Given a random variable X over probability space (Ω,Pr), variance
of X is the measure of how much does it deviate from its mean
value. Formally, Var(X ) = E

[
(X − E[X ])2

]
= E

[
X 2
]
− E[X ]2

Intuitive Derivation

Define Y = (X − E[X ])2 = X 2 − 2X E[X ] + E[X ]2.

Var(X ) = E[Y ]

= E
[
X 2
]
− 2 E[X ] E[X ] + E[X ]2

= E
[
X 2
]
− E[X ]2
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Chebyshev’s Inequality: Variance

Independence
Random variables X and Y are called mutually independent if
∀x, y ∈ R, Pr[X = x ∧ Y = y ] = Pr[X = x] Pr[Y = y ]

Lemma
If X and Y are independent random variables then
Var(X + Y ) = Var(X ) + Var(Y ).

Lemma
If X and Y are mutually independent, then E[XY ] = E[X ] E[Y ].
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Chebyshev’s Inequality

Chebyshev’s Inequality

Given a ≥ 0, Pr[|X − E[X ] | ≥ a] ≤ Var(X )
a2

Proof.
Y = (X − E[X ])2 is a non-negative random variable. Apply
Markov’s Inequality to Y for a2.

Pr
[
Y ≥ a2

]
≤ E[Y ]/a2 ⇔ Pr

[
(X − E[X ])2 ≥ a2

]
≤ Var(X )/a2

⇔ Pr[|X − E[X ] | ≥ a] ≤ Var(X )/a2

Pr[X ≤ E[X ]− a] ≤ Var(X )/a2 AND
Pr[X ≥ E[X ] + a] ≤ Var(X )/a2
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Example:Balls in a bin (contd)

Lemma
For 0 < ε < 1, k ≥ 1 and p = B/k, Pr[|p − p∗| ≥ ε] ≤ 1/kε2.

Proof.

Recall: Xi is 1 if i th ball is black, else 0, B =
∑k

i=1 Xi .

E[Xi ] = p∗, E[B] = kp∗. p = B/k.

Var(B) =
∑

i Var(Xi) = kp∗(1− p∗) (Exercise)

Pr[|p − p∗| ≥ ε] = Pr[|B/k − p∗| ≥ ε]
= Pr[|B − kp∗| ≥ kε]

(Chebyshev) ≤ Var(B)/k2ε2 = kp∗(1−p∗)/k2ε2

< 1/kε2
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Chernoff Bound

Lemma
Let X1, . . . ,Xk be k independent random variables such that, for
each i ∈ [1, k], Xi equals 1 with probability pi , and 0 with

probability (1− pi).

Let X =
∑k

i=1 Xi and µ = E[X ] =
∑

i pi .
For any 0 < δ < 1, it holds that:

Pr[|X − µ| ≥ δµ] ≤ 2e
−δ2µ

3

Pr[X ≥ (1 + δ)µ] ≤ e
−δ2µ

3 and Pr[X ≤ (1− δ)µ] ≤ e
−δ2µ

2

Proof.
In notes!
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Example:Balls in a bin (Contd.)

Lemma

For any 0 < ε < 1, and k ≥ 1, Pr[|p − p∗| ≥ ε] ≤ 2e−
kε2

3 .

Proof.

Recall: Xi is 1 is i th ball is black, else 0, B =
∑k

i=1 Xi .

E[Xi ] = p∗, E[B] = kp∗. p = B/k.

Pr[|p − p∗| ≥ ε] = Pr
[
|Bk − p∗| ≥ ε

]
= Pr[|B − kp∗| ≥ kε]
= Pr

[
|B − kp∗| ≥ ( ε

p∗ )kp∗
]

(Chernoff ) ≤ 2e
− ε2

3p∗2 kp∗

= 2e−
kε2

3p∗

(p∗ ≤ 1) ≤ 2e−
kε2

3
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Example Summary

The problem was to estimate the fraction of black balls p∗ in a bin
filled with white and black balls. Our estimate was p = B

k instead,
where out of k draws (with replacement) B balls turns out black.

Markov’s Inequality

For any k ≥ 1, Pr[p ≥ 2p∗] ≤ 1
2

Chebyshev’s Inequality

For any 0 < ε < 1, and k ≥ 1, Pr[|p − p∗| ≥ ε] ≤ 1/kε2.

Chernoff Bound

For any 0 < ε < 1, and k ≥ 1, Pr[|p − p∗| ≥ ε] ≤ 2e−
kε2

3 .
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Part IV

Randomized QuickSort (Contd.)
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Randomized QuickSort: Recall

Input: Array A of n numbers. Output: Numbers in sorted order.

Randomized QuickSort
1 Pick a pivot element uniformly at random from A.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Question: With what probability it takes O(n log n) time?
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Randomized QuickSort: High Probability Analysis

Informal Statement
Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

If n = 100 then this gives Pr[Q(A) ≤ 32n ln n] ≥ 0.99999.
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Randomized QuickSort: High Probability Analysis

Informal Statement
Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

Outline of the proof

k : depth of the recursion. Then Q(A) ≤ kn.

Prove that k ≤ 32 ln n with high probability. Which will imply
the result.

1 Focus on a single element. Prove that it “participates” in
> 32 ln n levels with probability at most 1/n4.

2 By union bound, any of the n elements participates in
> 32 ln n levels with probability at most 1/n3.

3 Therefore, all elements participate in ≤ 32 ln n w.p. (1− 1/n3).
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Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s ∈ A. We will track it at each level.

Let Si be the partition containing s at i th level.

S1 = A and Sk = {s}.
We call s lucky in i th iteration, if balanced split:
|Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |.
If ρ =#lucky rounds in first k rounds, then
|Sk | ≤ (3/4)ρn.
For |Sk | = 1, ρ = log4/3 n ≤ 4 ln n suffices.
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How many rounds before 4 ln n lucky rounds?

s lucky in round i if |Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |

Xi = 1 if s is lucky in i th round.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of NOT getting 4 ln n lucky rounds out of 32 ln n rounds

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff ) ≤ 2e
−δ2µ

2 = 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4
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Randomized QuickSort w.h.p. Analysis

n input elements. Probability that there is some un-lucky
element is at most 1

n4 ∗ n = 1
n3 .

Pr[depth of recursion in QuickSort > 32 ln n] ≤ 1
n3 .

Theorem

With high probability (i.e., 1− 1
n3 ) the depth of the recursion of

QuickSort is ≤ 32 ln n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(n ln n).

Q: How to increase the probability?
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