
CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

Ruta (UIUC) CS473 1 Spring 2018 1 / 53

CS 473: Algorithms, Spring 2018

High Probability Analysis &
Universal Hashing
Lecture 09
Feb 13, 2018

Most slides are courtesy Prof. Chekuri
Ruta (UIUC) CS473 2 Spring 2018 2 / 53

Outline

Randomized QuickSort w.h.p. (any questions?)

What is the probability that the algorithm will terminate in
O(n log n) time?

Balls & Bins
Expected bin size.

Expected max bin size→ max size w.h.p.

Analogy to hashing

Hashing

Ruta (UIUC) CS473 3 Spring 2018 3 / 53

Part I

Randomized QuickSort (Contd.)

Ruta (UIUC) CS473 4 Spring 2018 4 / 53

Randomized QuickSort: Recall

Input: Array A of n distinct numbers. Output: Numbers in sorted
order.

Randomized QuickSort
1 Pick a pivot element uniformly at random from A.

2 Split array into 2 subarrays: those smaller than pivot (L), and
those larger than pivot (R).

3 Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.
Question: With what probability it takes O(n log n) time?

Ruta (UIUC) CS473 5 Spring 2018 5 / 53

Randomized QuickSort: Recall

Input: Array A of n distinct numbers. Output: Numbers in sorted
order.

Randomized QuickSort
1 Pick a pivot element uniformly at random from A.

2 Split array into 2 subarrays: those smaller than pivot (L), and
those larger than pivot (R).

3 Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.

Question: With what probability it takes O(n log n) time?

Ruta (UIUC) CS473 5 Spring 2018 5 / 53

Randomized QuickSort: Recall

Input: Array A of n distinct numbers. Output: Numbers in sorted
order.

Randomized QuickSort
1 Pick a pivot element uniformly at random from A.

2 Split array into 2 subarrays: those smaller than pivot (L), and
those larger than pivot (R).

3 Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.
Question: With what probability it takes O(n log n) time?

Ruta (UIUC) CS473 5 Spring 2018 5 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

If n = 100 then this gives Pr[Q(A) ≤ 32n ln n] ≥ 0.99999.

Ruta (UIUC) CS473 6 Spring 2018 6 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

If n = 100 then this gives Pr[Q(A) ≤ 32n ln n] ≥ 0.99999.

Ruta (UIUC) CS473 6 Spring 2018 6 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

Outline of the proof

If depth of recursion is k then Q(A) ≤ kn.

Prove that depth of recursion ≤ 32 ln n with high probability
(w.h.p.) . This will imply the result.

1 Focus on a single element. Prove that it “participates” in
> 32 ln n levels with probability (w.p.) at most 1/n4.

2 By union bound, any of the n elements participates in
> 32 ln n levels w.p. at most 1/n3.

3 Therefore, all elements participate in ≤ 32 ln n w.p. (1− 1/n3).

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

Outline of the proof

If depth of recursion is k then Q(A) ≤ kn.

Prove that depth of recursion ≤ 32 ln n with high probability
(w.h.p.) . This will imply the result.

1 Focus on a single element. Prove that it “participates” in
> 32 ln n levels with probability (w.p.) at most 1/n4.

2 By union bound, any of the n elements participates in
> 32 ln n levels w.p. at most

1/n3.

3 Therefore, all elements participate in ≤ 32 ln n w.p. (1− 1/n3).

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

Outline of the proof

If depth of recursion is k then Q(A) ≤ kn.

Prove that depth of recursion ≤ 32 ln n with high probability
(w.h.p.) . This will imply the result.

1 Focus on a single element. Prove that it “participates” in
> 32 ln n levels with probability (w.p.) at most 1/n4.

2 By union bound, any of the n elements participates in
> 32 ln n levels w.p. at most 1/n3.

3 Therefore, all elements participate in ≤ 32 ln n w.p. (1− 1/n3).

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

Outline of the proof

If depth of recursion is k then Q(A) ≤ kn.

Prove that depth of recursion ≤ 32 ln n with high probability
(w.h.p.) . This will imply the result.

1 Focus on a single element. Prove that it “participates” in
> 32 ln n levels with probability (w.p.) at most 1/n4.

2 By union bound, any of the n elements participates in
> 32 ln n levels w.p. at most 1/n3.

3 Therefore, all elements participate in ≤ 32 ln n w.p. (1− 1/n3).

Ruta (UIUC) CS473 7 Spring 2018 7 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
An element participates in > 32 ln n w.p. ≤ 1/n4.

Intuition
1 When we pick a pivot from an array of size n uniformly at

random, what is the probability that its rank is between n/4 and
3n/4?

1/2.

2 If we pick such a pivot then the size of L and R is at most?
3n/4. (Balanced split)

3 If an array is reduced to at least its 3/4th size every time, then
after how many rounds only one element remains? ≤ 4 ln n.

4 If 32 ln n splits, then E[Balanced-split] = 16 ln n. Out of these
there are < 4 ln n balanced split w.p. ≤ 1/n4.

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
An element participates in > 32 ln n w.p. ≤ 1/n4.

Intuition
1 When we pick a pivot from an array of size n uniformly at

random, what is the probability that its rank is between n/4 and
3n/4? 1/2.

2 If we pick such a pivot then the size of L and R is at most?
3n/4. (Balanced split)

3 If an array is reduced to at least its 3/4th size every time, then
after how many rounds only one element remains? ≤ 4 ln n.

4 If 32 ln n splits, then E[Balanced-split] = 16 ln n. Out of these
there are < 4 ln n balanced split w.p. ≤ 1/n4.

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
An element participates in > 32 ln n w.p. ≤ 1/n4.

Intuition
1 When we pick a pivot from an array of size n uniformly at

random, what is the probability that its rank is between n/4 and
3n/4? 1/2.

2 If we pick such a pivot then the size of L and R is at most?

3n/4. (Balanced split)

3 If an array is reduced to at least its 3/4th size every time, then
after how many rounds only one element remains? ≤ 4 ln n.

4 If 32 ln n splits, then E[Balanced-split] = 16 ln n. Out of these
there are < 4 ln n balanced split w.p. ≤ 1/n4.

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
An element participates in > 32 ln n w.p. ≤ 1/n4.

Intuition
1 When we pick a pivot from an array of size n uniformly at

random, what is the probability that its rank is between n/4 and
3n/4? 1/2.

2 If we pick such a pivot then the size of L and R is at most?
3n/4. (Balanced split)

3 If an array is reduced to at least its 3/4th size every time, then
after how many rounds only one element remains? ≤ 4 ln n.

4 If 32 ln n splits, then E[Balanced-split] = 16 ln n. Out of these
there are < 4 ln n balanced split w.p. ≤ 1/n4.

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
An element participates in > 32 ln n w.p. ≤ 1/n4.

Intuition
1 When we pick a pivot from an array of size n uniformly at

random, what is the probability that its rank is between n/4 and
3n/4? 1/2.

2 If we pick such a pivot then the size of L and R is at most?
3n/4. (Balanced split)

3 If an array is reduced to at least its 3/4th size every time, then
after how many rounds only one element remains?

≤ 4 ln n.

4 If 32 ln n splits, then E[Balanced-split] = 16 ln n. Out of these
there are < 4 ln n balanced split w.p. ≤ 1/n4.

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
An element participates in > 32 ln n w.p. ≤ 1/n4.

Intuition
1 When we pick a pivot from an array of size n uniformly at

random, what is the probability that its rank is between n/4 and
3n/4? 1/2.

2 If we pick such a pivot then the size of L and R is at most?
3n/4. (Balanced split)

3 If an array is reduced to at least its 3/4th size every time, then
after how many rounds only one element remains? ≤ 4 ln n.

4 If 32 ln n splits, then E[Balanced-split] = 16 ln n. Out of these
there are < 4 ln n balanced split w.p. ≤ 1/n4.

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Randomized QuickSort: High Probability Analysis

Informal Statement
An element participates in > 32 ln n w.p. ≤ 1/n4.

Intuition
1 When we pick a pivot from an array of size n uniformly at

random, what is the probability that its rank is between n/4 and
3n/4? 1/2.

2 If we pick such a pivot then the size of L and R is at most?
3n/4. (Balanced split)

3 If an array is reduced to at least its 3/4th size every time, then
after how many rounds only one element remains? ≤ 4 ln n.

4 If 32 ln n splits, then E[Balanced-split] = 16 ln n. Out of these
there are < 4 ln n balanced split w.p. ≤ 1/n4.

Ruta (UIUC) CS473 8 Spring 2018 8 / 53

Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s ∈ A. We will track it at each level.

Let Si be the partition containing s at i th level.

S1 = A and Sk = {s}.

We call s lucky in i th iteration, if balanced split:
|Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |.

If ρ =#lucky rounds in first k rounds, then
|Sk | ≤ (3/4)ρn.

For |Sk | = 1, ρ = 4 ln n ≥ log4/3 n suffices.

Ruta (UIUC) CS473 9 Spring 2018 9 / 53

Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s ∈ A. We will track it at each level.

Let Si be the partition containing s at i th level.

S1 = A and Sk = {s}.

We call s lucky in i th iteration, if balanced split:
|Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |.

If ρ =#lucky rounds in first k rounds, then
|Sk | ≤ (3/4)ρn.

For |Sk | = 1, ρ = 4 ln n ≥ log4/3 n suffices.

Ruta (UIUC) CS473 9 Spring 2018 9 / 53

Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s ∈ A. We will track it at each level.

Let Si be the partition containing s at i th level.

S1 = A and Sk = {s}.

We call s lucky in i th iteration, if balanced split:
|Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |.

If ρ =#lucky rounds in first k rounds, then
|Sk | ≤ (3/4)ρn.

For |Sk | = 1, ρ = 4 ln n ≥ log4/3 n suffices.

Ruta (UIUC) CS473 9 Spring 2018 9 / 53

Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s ∈ A. We will track it at each level.

Let Si be the partition containing s at i th level.

S1 = A and Sk = {s}.

We call s lucky in i th iteration, if balanced split:
|Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |.

If ρ =#lucky rounds in first k rounds, then
|Sk | ≤ (3/4)ρn.

For |Sk | = 1, ρ = 4 ln n ≥ log4/3 n suffices.

Ruta (UIUC) CS473 9 Spring 2018 9 / 53

Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s ∈ A. We will track it at each level.

Let Si be the partition containing s at i th level.

S1 = A and Sk = {s}.

We call s lucky in i th iteration, if balanced split:
|Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |.

If ρ =#lucky rounds in first k rounds, then
|Sk | ≤ (3/4)ρn.

For |Sk | = 1, ρ = 4 ln n ≥ log4/3 n suffices.

Ruta (UIUC) CS473 9 Spring 2018 9 / 53

How may rounds before 4 ln n lucky rounds?

Xi = 1 if s is lucky in i th iteration.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of ≤ 4 ln n lucky rounds out of 32 ln n rounds is,

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff) ≤ 2e
−δ2µ

2

= 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

How may rounds before 4 ln n lucky rounds?

Xi = 1 if s is lucky in i th iteration.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of ≤ 4 ln n lucky rounds out of 32 ln n rounds is,

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff) ≤ 2e
−δ2µ

2

= 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

How may rounds before 4 ln n lucky rounds?

Xi = 1 if s is lucky in i th iteration.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of ≤ 4 ln n lucky rounds out of 32 ln n rounds is,

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff) ≤ 2e
−δ2µ

2

= 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

How may rounds before 4 ln n lucky rounds?

Xi = 1 if s is lucky in i th iteration.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of ≤ 4 ln n lucky rounds out of 32 ln n rounds is,

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff) ≤ 2e
−δ2µ

2

= 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

How may rounds before 4 ln n lucky rounds?

Xi = 1 if s is lucky in i th iteration.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of ≤ 4 ln n lucky rounds out of 32 ln n rounds is,

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff) ≤ 2e
−δ2µ

2

= 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

How may rounds before 4 ln n lucky rounds?

Xi = 1 if s is lucky in i th iteration.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of ≤ 4 ln n lucky rounds out of 32 ln n rounds is,

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff) ≤ 2e
−δ2µ

2

= 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

How may rounds before 4 ln n lucky rounds?

Xi = 1 if s is lucky in i th iteration.

Observation: X1, . . . ,Xk are independent variables.

Pr[Xi = 1] = 1
2

Why?

Clearly, ρ =
∑k

i=1 Xi . Let µ = E[ρ] = k
2

.

Set k = 32 ln n and δ = 3
4

. (1− δ) = 1
4

.

Probability of ≤ 4 ln n lucky rounds out of 32 ln n rounds is,

Pr[ρ ≤ 4 ln n] = Pr[ρ ≤ k/8]
= Pr[ρ ≤ (1− δ)µ]

(Chernoff) ≤ 2e
−δ2µ

2

= 2e−
9k
64

= 2e−4.5 ln n ≤ 1
n4

Ruta (UIUC) CS473 10 Spring 2018 10 / 53

Randomized QuickSort w.h.p. Analysis

n input elements. Probability that depth of recursion in
QuickSort > 32 ln n is at most 1

n4 ∗ n = 1
n3 .

Theorem

With high probability (i.e., 1− 1
n3) the depth of the recursion of

QuickSort is ≤ 32 ln n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(n ln n).

Q: How to increase the probability?

Ruta (UIUC) CS473 11 Spring 2018 11 / 53

Randomized QuickSort w.h.p. Analysis

n input elements. Probability that depth of recursion in
QuickSort > 32 ln n is at most 1

n4 ∗ n = 1
n3 .

Theorem

With high probability (i.e., 1− 1
n3) the depth of the recursion of

QuickSort is ≤ 32 ln n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(n ln n).

Q: How to increase the probability?

Ruta (UIUC) CS473 11 Spring 2018 11 / 53

Randomized QuickSort w.h.p. Analysis

n input elements. Probability that depth of recursion in
QuickSort > 32 ln n is at most 1

n4 ∗ n = 1
n3 .

Theorem

With high probability (i.e., 1− 1
n3) the depth of the recursion of

QuickSort is ≤ 32 ln n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(n ln n).

Q: How to increase the probability?

Ruta (UIUC) CS473 11 Spring 2018 11 / 53

Part II

Balls and Bins

Ruta (UIUC) CS473 12 Spring 2018 12 / 53

Expected Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, how
many balls lend in a bin in expectation (expected size of a bin)?

Solution
Fix a bin, say j .
Random variable Xij is 1 if i th balls falls in j th bin, otherwise 0.

E[Xij] = Pr[Xij = 1] =1/n.

R.V. Yj = # balls in j th bin =
∑n

i=1 Xij .

E[Yj] =
∑n

i=1 E[Xij] = n · 1/n = 1.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Expected Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, how
many balls lend in a bin in expectation (expected size of a bin)?

Solution
Fix a bin, say j .

Random variable Xij is 1 if i th balls falls in j th bin, otherwise 0.

E[Xij] = Pr[Xij = 1] =1/n.

R.V. Yj = # balls in j th bin =
∑n

i=1 Xij .

E[Yj] =
∑n

i=1 E[Xij] = n · 1/n = 1.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Expected Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, how
many balls lend in a bin in expectation (expected size of a bin)?

Solution
Fix a bin, say j .
Random variable Xij is 1 if i th balls falls in j th bin, otherwise 0.

E[Xij] = Pr[Xij = 1] =1/n.

R.V. Yj = # balls in j th bin =
∑n

i=1 Xij .

E[Yj] =
∑n

i=1 E[Xij] = n · 1/n = 1.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Expected Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, how
many balls lend in a bin in expectation (expected size of a bin)?

Solution
Fix a bin, say j .
Random variable Xij is 1 if i th balls falls in j th bin, otherwise 0.

E[Xij] = Pr[Xij = 1] =

1/n.

R.V. Yj = # balls in j th bin =
∑n

i=1 Xij .

E[Yj] =
∑n

i=1 E[Xij] = n · 1/n = 1.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Expected Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, how
many balls lend in a bin in expectation (expected size of a bin)?

Solution
Fix a bin, say j .
Random variable Xij is 1 if i th balls falls in j th bin, otherwise 0.

E[Xij] = Pr[Xij = 1] =1/n.

R.V. Yj = # balls in j th bin =
∑n

i=1 Xij .

E[Yj] =
∑n

i=1 E[Xij] = n · 1/n = 1.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Expected Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, how
many balls lend in a bin in expectation (expected size of a bin)?

Solution
Fix a bin, say j .
Random variable Xij is 1 if i th balls falls in j th bin, otherwise 0.

E[Xij] = Pr[Xij = 1] =1/n.

R.V. Yj = # balls in j th bin =
∑n

i=1 Xij .

E[Yj] =
∑n

i=1 E[Xij] = n · 1/n = 1.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Expected Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, how
many balls lend in a bin in expectation (expected size of a bin)?

Solution
Fix a bin, say j .
Random variable Xij is 1 if i th balls falls in j th bin, otherwise 0.

E[Xij] = Pr[Xij = 1] =1/n.

R.V. Yj = # balls in j th bin =
∑n

i=1 Xij .

E[Yj] =
∑n

i=1 E[Xij] = n · 1/n = 1.

Ruta (UIUC) CS473 13 Spring 2018 13 / 53

Expected Max Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, what is
the expected “maximum” bin size?

E
[
maxn

j=1 Yj

]
?

Possible Solution
R.V. Z = maxn

j=1 Yj . E[Z] =
∑n

k=1 Pr[Z = k] k .

How to compute Pr[Z = k], i.e., count configurations where no
bin has more than k balls and at least one has k balls.

Too many to count!!

Ruta (UIUC) CS473 14 Spring 2018 14 / 53

Expected Max Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, what is
the expected “maximum” bin size?

E
[
maxn

j=1 Yj

]
?

Possible Solution
R.V. Z = maxn

j=1 Yj . E[Z] =
∑n

k=1 Pr[Z = k] k .

How to compute Pr[Z = k], i.e., count configurations where no
bin has more than k balls and at least one has k balls.

Too many to count!!

Ruta (UIUC) CS473 14 Spring 2018 14 / 53

Expected Max Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, what is
the expected “maximum” bin size?

E
[
maxn

j=1 Yj

]
?

Possible Solution
R.V. Z = maxn

j=1 Yj . E[Z] =
∑n

k=1 Pr[Z = k] k .

How to compute Pr[Z = k], i.e., count configurations where no
bin has more than k balls and at least one has k balls.

Too many to count!!

Ruta (UIUC) CS473 14 Spring 2018 14 / 53

Expected Max Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, what is
the expected “maximum” bin size?

E
[
maxn

j=1 Yj

]
?

Possible Solution
R.V. Z = maxn

j=1 Yj . E[Z] =
∑n

k=1 Pr[Z = k] k .

How to compute Pr[Z = k], i.e., count configurations where no
bin has more than k balls and at least one has k balls.

Too many to count!!

Ruta (UIUC) CS473 14 Spring 2018 14 / 53

Expected Max Bin Size

Problem
If n balls are thrown independently and uniformly into n bins, what is
the expected “maximum” bin size?

E
[
maxn

j=1 Yj

]
?

Possible Solution
R.V. Z = maxn

j=1 Yj . E[Z] =
∑n

k=1 Pr[Z = k] k .

How to compute Pr[Z = k], i.e., count configurations where no
bin has more than k balls and at least one has k balls.

Too many to count!!

Ruta (UIUC) CS473 14 Spring 2018 14 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size?

R.V. Z = maxn
j=1 Yj . Show E[Z] ≤ O

(
ln n

ln ln n

)
?

Possible Solution

If Pr
[
Z > 8 ln n

ln ln n

]
≤ 1/n2, then: define A = 8 ln n

ln ln n .

E[Z] =
∑n

k=1 Pr[Z = k] k

≤
∑A

k=1 Pr[Z = k]A +
∑n

k=A+1 Pr[Z = k] n
≤ A · Pr[Z ≤ A] + n · Pr[Z > A]
≤ A · (1) + n · (1/n2) = O(A) = O

(
ln n

ln ln n

)
Bound Pr

[
Z > 8 ln n

ln ln n

]
.

Ruta (UIUC) CS473 15 Spring 2018 15 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size?

R.V. Z = maxn
j=1 Yj . Show E[Z] ≤ O

(
ln n

ln ln n

)
?

Possible Solution

If Pr
[
Z > 8 ln n

ln ln n

]
≤ 1/n2, then: define A = 8 ln n

ln ln n .

E[Z] =
∑n

k=1 Pr[Z = k] k

≤
∑A

k=1 Pr[Z = k]A +
∑n

k=A+1 Pr[Z = k] n

≤ A · Pr[Z ≤ A] + n · Pr[Z > A]
≤ A · (1) + n · (1/n2) = O(A) = O

(
ln n

ln ln n

)
Bound Pr

[
Z > 8 ln n

ln ln n

]
.

Ruta (UIUC) CS473 15 Spring 2018 15 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size?

R.V. Z = maxn
j=1 Yj . Show E[Z] ≤ O

(
ln n

ln ln n

)
?

Possible Solution

If Pr
[
Z > 8 ln n

ln ln n

]
≤ 1/n2, then: define A = 8 ln n

ln ln n .

E[Z] =
∑n

k=1 Pr[Z = k] k

≤
∑A

k=1 Pr[Z = k]A +
∑n

k=A+1 Pr[Z = k] n
≤ A · Pr[Z ≤ A] + n · Pr[Z > A]
≤ A · (1) + n · (1/n2) = O(A) = O

(
ln n

ln ln n

)

Bound Pr
[
Z > 8 ln n

ln ln n

]
.

Ruta (UIUC) CS473 15 Spring 2018 15 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size?

R.V. Z = maxn
j=1 Yj . Show E[Z] ≤ O

(
ln n

ln ln n

)
?

Possible Solution

If Pr
[
Z > 8 ln n

ln ln n

]
≤ 1/n2, then: define A = 8 ln n

ln ln n .

E[Z] =
∑n

k=1 Pr[Z = k] k

≤
∑A

k=1 Pr[Z = k]A +
∑n

k=A+1 Pr[Z = k] n
≤ A · Pr[Z ≤ A] + n · Pr[Z > A]
≤ A · (1) + n · (1/n2) = O(A) = O

(
ln n

ln ln n

)
Bound Pr

[
Z > 8 ln n

ln ln n

]
.

Ruta (UIUC) CS473 15 Spring 2018 15 / 53

Expected Max Bin Size (Contd.)

Bound Pr
[
Z > 8 ln n

ln ln n

]
using Chernoff inequality.

Chernoff Ineq. We Saw

X1, . . . ,Xk independent binary R.V., and X =
∑k

i=1 Xi ,
µ = E[X], then for 0 < δ < 1

Pr[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3 & Pr[X ≤ (1− δ)µ] ≤ e−δ

2µ/2

Stronger Versions

For δ > 0, Pr[X > (1 + δ)µ] <
(

eδ
(1+δ)(1+δ)

)µ
.

For 0 < δ < 1 Pr[X < (1− δ)µ] <
(

e−δ

(1−δ)(1−δ)

)µ

Ruta (UIUC) CS473 16 Spring 2018 16 / 53

Expected Max Bin Size (Contd.)

Bound Pr
[
Z > 8 ln n

ln ln n

]
using Chernoff inequality.

Chernoff Ineq. We Saw

X1, . . . ,Xk independent binary R.V., and X =
∑k

i=1 Xi ,
µ = E[X], then for 0 < δ < 1

Pr[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3 & Pr[X ≤ (1− δ)µ] ≤ e−δ

2µ/2

Stronger Versions

For δ > 0, Pr[X > (1 + δ)µ] <
(

eδ
(1+δ)(1+δ)

)µ
.

For 0 < δ < 1 Pr[X < (1− δ)µ] <
(

e−δ

(1−δ)(1−δ)

)µ
Ruta (UIUC) CS473 16 Spring 2018 16 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n). → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution

Recall: Yj =# balls in bin j , E[Yj] = 1, and A = 8 ln n
ln ln n

Pr[Yj > A] = Pr[Yj ≥ AE[Y]] <

(
eA−1

AA

)
<

(
n6/ ln ln n

AA

)

AA =

(
8 ln n
ln ln n

) 8 ln n
ln ln n

≥ (
√

ln n)
8 ln n
ln ln n = (ln n)

4 ln n
ln ln n = e4lgn = n4

Pr

[
Yj >

8 ln n
ln ln n

]
< 1/n3

Ruta (UIUC) CS473 17 Spring 2018 17 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n). → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution

Recall: Yj =# balls in bin j , E[Yj] = 1, and A = 8 ln n
ln ln n

Pr[Yj > A] = Pr[Yj ≥ AE[Y]] <

(
eA−1

AA

)
<

(
n6/ ln ln n

AA

)

AA =

(
8 ln n
ln ln n

) 8 ln n
ln ln n

≥ (
√

ln n)
8 ln n
ln ln n = (ln n)

4 ln n
ln ln n = e4lgn = n4

Pr

[
Yj >

8 ln n
ln ln n

]
< 1/n3

Ruta (UIUC) CS473 17 Spring 2018 17 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n). → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution

Recall: Yj =# balls in bin j , E[Yj] = 1, and A = 8 ln n
ln ln n

Pr[Yj > A] = Pr[Yj ≥ AE[Y]] <

(
eA−1

AA

)
<

(
n6/ ln ln n

AA

)

AA =

(
8 ln n
ln ln n

) 8 ln n
ln ln n

≥ (
√

ln n)
8 ln n
ln ln n = (ln n)

4 ln n
ln ln n = e4lgn = n4

Pr

[
Yj >

8 ln n
ln ln n

]
< 1/n3

Ruta (UIUC) CS473 17 Spring 2018 17 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n). → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution

Recall: Yj =# balls in bin j , E[Yj] = 1, and A = 8 ln n
ln ln n

Pr[Yj > A] = Pr[Yj ≥ AE[Y]] <

(
eA−1

AA

)
<

(
n6/ ln ln n

AA

)

AA =

(
8 ln n
ln ln n

) 8 ln n
ln ln n

≥ (
√

ln n)
8 ln n
ln ln n = (ln n)

4 ln n
ln ln n = e4lgn = n4

Pr

[
Yj >

8 ln n
ln ln n

]
< 1/n3

Ruta (UIUC) CS473 17 Spring 2018 17 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n) → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution
Recall: Yj =# balls in bin j . E[Yj] = 1.

Pr[Yj > 8 ln n/ ln ln n] ≤ 1/n3 (Using Chernoff)

(Union bound)
Pr
[
Z > 8 ln n

ln ln n

]
≤
∑n

j=1 Pr
[
Yj >

8 ln n
ln ln n

]
≤ n · 1/n3 = 1/n2.

Max bin size is at most O(ln n
ln ln n) with probability 1−1/n2.

Ω(ln n
ln ln n) is a lower bound as well!

Ruta (UIUC) CS473 18 Spring 2018 18 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n) → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution
Recall: Yj =# balls in bin j . E[Yj] = 1.

Pr[Yj > 8 ln n/ ln ln n] ≤ 1/n3 (Using Chernoff)

(Union bound)
Pr
[
Z > 8 ln n

ln ln n

]
≤
∑n

j=1 Pr
[
Yj >

8 ln n
ln ln n

]
≤ n · 1/n3 = 1/n2.

Max bin size is at most O(ln n
ln ln n) with probability 1−1/n2.

Ω(ln n
ln ln n) is a lower bound as well!

Ruta (UIUC) CS473 18 Spring 2018 18 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n) → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution
Recall: Yj =# balls in bin j . E[Yj] = 1.

Pr[Yj > 8 ln n/ ln ln n] ≤ 1/n3 (Using Chernoff)

(Union bound)
Pr
[
Z > 8 ln n

ln ln n

]
≤
∑n

j=1 Pr
[
Yj >

8 ln n
ln ln n

]
≤ n · 1/n3 = 1/n2.

Max bin size is at most O(ln n
ln ln n) with probability 1−1/n2.

Ω(ln n
ln ln n) is a lower bound as well!

Ruta (UIUC) CS473 18 Spring 2018 18 / 53

Expected Max Bin Size (Contd.)

Problem
What is the expected maximum bin size? Let Z = maxn

j=1 Yj .

Show E[Z] ≤ O(ln n
ln ln n) → Show Pr

[
Z > 8 ln n

ln ln n

]
≤ 1/n2.

Solution
Recall: Yj =# balls in bin j . E[Yj] = 1.

Pr[Yj > 8 ln n/ ln ln n] ≤ 1/n3 (Using Chernoff)

(Union bound)
Pr
[
Z > 8 ln n

ln ln n

]
≤
∑n

j=1 Pr
[
Yj >

8 ln n
ln ln n

]
≤ n · 1/n3 = 1/n2.

Max bin size is at most O(ln n
ln ln n) with probability 1−1/n2.

Ω(ln n
ln ln n) is a lower bound as well!

Ruta (UIUC) CS473 18 Spring 2018 18 / 53

Balls n Bins→ Hashing

Hashing

Storing elements in a table such that look up is O(1)-time.

Throwing numbered balls
Imagine that n balls have numbers coming from a universe U .
|U| � n.

Hashing: throw balls (elements) randomly into n bins such that bin
sizes are small and also lookup is easy!.

Ruta (UIUC) CS473 19 Spring 2018 19 / 53

Balls n Bins→ Hashing

Hashing

Storing elements in a table such that look up is O(1)-time.

Throwing numbered balls
Imagine that n balls have numbers coming from a universe U .
|U| � n.

Hashing: throw balls (elements) randomly into n bins such that bin
sizes are small and also lookup is easy!.

Ruta (UIUC) CS473 19 Spring 2018 19 / 53

Balls n Bins→ Hashing

Hashing

Storing elements in a table such that look up is O(1)-time.

Throwing numbered balls
Imagine that n balls have numbers coming from a universe U .
|U| � n.

Hashing: throw balls (elements) randomly into n bins such that bin
sizes are small

and also lookup is easy!.

Ruta (UIUC) CS473 19 Spring 2018 19 / 53

Balls n Bins→ Hashing

Hashing

Storing elements in a table such that look up is O(1)-time.

Throwing numbered balls
Imagine that n balls have numbers coming from a universe U .
|U| � n.

Hashing: throw balls (elements) randomly into n bins such that bin
sizes are small and also lookup is easy!.

Ruta (UIUC) CS473 19 Spring 2018 19 / 53

Part III

Hash Tables

Ruta (UIUC) CS473 20 Spring 2018 20 / 53

Dictionary Data Structure

1 U : universe of keys with total order: numbers, strings, etc.

2 Data structure to store a subset S ⊆ U
3 Operations:

1 Search/lookup: given x ∈ U is x ∈ S?
2 Insert: given x 6∈ S add x to S .
3 Delete: given x ∈ S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.

Ruta (UIUC) CS473 21 Spring 2018 21 / 53

Dictionary Data Structure

1 U : universe of keys with total order: numbers, strings, etc.

2 Data structure to store a subset S ⊆ U
3 Operations:

1 Search/lookup: given x ∈ U is x ∈ S?
2 Insert: given x 6∈ S add x to S .
3 Delete: given x ∈ S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.

Ruta (UIUC) CS473 21 Spring 2018 21 / 53

Dictionary Data Structure

1 U : universe of keys with total order: numbers, strings, etc.

2 Data structure to store a subset S ⊆ U
3 Operations:

1 Search/lookup: given x ∈ U is x ∈ S?
2 Insert: given x 6∈ S add x to S .
3 Delete: given x ∈ S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.

Ruta (UIUC) CS473 21 Spring 2018 21 / 53

Dictionary Data Structures

Common solutions:

1 Static:
1 Store S as a sorted array
2 Lookup: Binary search in O(log |S|) time (comparisons)

2 Dynamic:
1 Store S in a balanced binary search tree
2 Lookup, Insert, Delete in O(log |S|) time (comparisons)

Ruta (UIUC) CS473 22 Spring 2018 22 / 53

Dictionary Data Structures

Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.

Motivation:

1 Universe U may not be (naturally) totally ordered.

2 Keys correspond to large objects (images, graphs etc) for which
comparisons are very expensive.

3 Want to improve “average” performance of lookups to O(1)
even at cost of extra space or errors with small probability:
many applications for fast lookups in networking, security, etc.

Ruta (UIUC) CS473 23 Spring 2018 23 / 53

Dictionary Data Structures

Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.

Motivation:

1 Universe U may not be (naturally) totally ordered.

2 Keys correspond to large objects (images, graphs etc) for which
comparisons are very expensive.

3 Want to improve “average” performance of lookups to O(1)
even at cost of extra space or errors with small probability:
many applications for fast lookups in networking, security, etc.

Ruta (UIUC) CS473 23 Spring 2018 23 / 53

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Ruta (UIUC) CS473 24 Spring 2018 24 / 53

Handling Collisions: Chaining

Collision: h(x) = h(y) for some x 6= y .

Chaining to handle collisions:
1 For each slot i store all items hashed to slot i in a linked list.
T [i] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

y

s

f

This is also known as Open hashing.
Ruta (UIUC) CS473 25 Spring 2018 25 / 53

Handling Collisions

Several other techniques:

1 Cuckoo hashing.
Every value has two possible locations. When inserting, insert in
one of the locations, otherwise, kick stored value to its other
location. Repeat till stable. if no stability then rebuild table.

2 . . .

3 Others.

Ruta (UIUC) CS473 26 Spring 2018 26 / 53

Understanding Hashing

Does hashing give O(1) time per operation for dictionaries?

Questions:

1 Complexity of evaluating h on a given element?

2 Relative sizes of the universe U and the set to be stored S .

3 Size of table relative to size of S .

4 Worst-case vs average-case vs randomized (expected) time?

5 How do we choose h?

Ruta (UIUC) CS473 27 Spring 2018 27 / 53

Understanding Hashing

Does hashing give O(1) time per operation for dictionaries?

Questions:

1 Complexity of evaluating h on a given element?

2 Relative sizes of the universe U and the set to be stored S .

3 Size of table relative to size of S .

4 Worst-case vs average-case vs randomized (expected) time?

5 How do we choose h?

Ruta (UIUC) CS473 27 Spring 2018 27 / 53

Understanding Hashing

1 Complexity of evaluating h on a given element? Should be small.

2 Relative sizes of the universe U and the set to be stored S :
typically |U| � |S|.

3 Size of table relative to size of S . The load factor of T is the
ratio n/m where n = |S| and m = |T |. Typically n/m is a
small constant smaller than 1.

Also known as the fill factor.

Main and interrelated questions:

1 Worst-case vs average-case vs randomized (expected) time?

2 How do we choose h?

Ruta (UIUC) CS473 28 Spring 2018 28 / 53

Understanding Hashing

1 Complexity of evaluating h on a given element? Should be small.

2 Relative sizes of the universe U and the set to be stored S :
typically |U| � |S|.

3 Size of table relative to size of S . The load factor of T is the
ratio n/m where n = |S| and m = |T |.

Typically n/m is a
small constant smaller than 1.

Also known as the fill factor.

Main and interrelated questions:

1 Worst-case vs average-case vs randomized (expected) time?

2 How do we choose h?

Ruta (UIUC) CS473 28 Spring 2018 28 / 53

Understanding Hashing

1 Complexity of evaluating h on a given element? Should be small.

2 Relative sizes of the universe U and the set to be stored S :
typically |U| � |S|.

3 Size of table relative to size of S . The load factor of T is the
ratio n/m where n = |S| and m = |T |. Typically n/m is a
small constant smaller than 1.

Also known as the fill factor.

Main and interrelated questions:

1 Worst-case vs average-case vs randomized (expected) time?

2 How do we choose h?

Ruta (UIUC) CS473 28 Spring 2018 28 / 53

Understanding Hashing

1 Complexity of evaluating h on a given element? Should be small.

2 Relative sizes of the universe U and the set to be stored S :
typically |U| � |S|.

3 Size of table relative to size of S . The load factor of T is the
ratio n/m where n = |S| and m = |T |. Typically n/m is a
small constant smaller than 1.

Also known as the fill factor.

Main and interrelated questions:

1 Worst-case vs average-case vs randomized (expected) time?

2 How do we choose h?

Ruta (UIUC) CS473 28 Spring 2018 28 / 53

Single hash function

1 U : universe (very large).

2 Assume N = |U| � m where m is size of table T . In
particular assume N ≥ m2 (very conservative).

3 Fix hash function h : U → {0, . . . ,m − 1}.
4 N items hashed to m slots. Minimize the max load. Howmuch

is it? By pigeon hole principle, N/m ≥ m!.

5 Implies that there is a set S ⊆ U where |S| = m such that all
of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set.
Bad.

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Single hash function

1 U : universe (very large).

2 Assume N = |U| � m where m is size of table T . In
particular assume N ≥ m2 (very conservative).

3 Fix hash function h : U → {0, . . . ,m − 1}.

4 N items hashed to m slots. Minimize the max load. Howmuch
is it? By pigeon hole principle, N/m ≥ m!.

5 Implies that there is a set S ⊆ U where |S| = m such that all
of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set.
Bad.

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Single hash function

1 U : universe (very large).

2 Assume N = |U| � m where m is size of table T . In
particular assume N ≥ m2 (very conservative).

3 Fix hash function h : U → {0, . . . ,m − 1}.
4 N items hashed to m slots. Minimize the max load. Howmuch

is it?

By pigeon hole principle, N/m ≥ m!.

5 Implies that there is a set S ⊆ U where |S| = m such that all
of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set.
Bad.

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Single hash function

1 U : universe (very large).

2 Assume N = |U| � m where m is size of table T . In
particular assume N ≥ m2 (very conservative).

3 Fix hash function h : U → {0, . . . ,m − 1}.
4 N items hashed to m slots. Minimize the max load. Howmuch

is it? By pigeon hole principle, N/m ≥ m!.

5 Implies that there is a set S ⊆ U where |S| = m such that all
of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set.
Bad.

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Single hash function

1 U : universe (very large).

2 Assume N = |U| � m where m is size of table T . In
particular assume N ≥ m2 (very conservative).

3 Fix hash function h : U → {0, . . . ,m − 1}.
4 N items hashed to m slots. Minimize the max load. Howmuch

is it? By pigeon hole principle, N/m ≥ m!.

5 Implies that there is a set S ⊆ U where |S| = m such that all
of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set.
Bad.

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

Single hash function

1 U : universe (very large).

2 Assume N = |U| � m where m is size of table T . In
particular assume N ≥ m2 (very conservative).

3 Fix hash function h : U → {0, . . . ,m − 1}.
4 N items hashed to m slots. Minimize the max load. Howmuch

is it? By pigeon hole principle, N/m ≥ m!.

5 Implies that there is a set S ⊆ U where |S| = m such that all
of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set.
Bad.

Ruta (UIUC) CS473 29 Spring 2018 29 / 53

How many hash functions are there, anyway?

Let H be the set of all functions from U = {1, . . . ,U} to
{1, . . . ,m}. The number of functions in H is

(A) U + m.

(B) Um.

(C) Um.

(D) mU .

(E)
(U+m

m

)
.

(F) The answer is blowing in the wind.

Ruta (UIUC) CS473 30 Spring 2018 30 / 53

How many bits one need?

Let H be a set of functions from U = {1, . . . ,U} to {1, . . . ,m}.
Specifying a function in H requires:

(A) O(U + m) bits.

(B) O(Um) bits.

(C) O(Um) bits.

(D) O
(
mU
)

bits.

(E) O(log |H|) bits.

(F) Many many bits. At least two.

Ruta (UIUC) CS473 31 Spring 2018 31 / 53

Picking a hash function

1 Hash function are often chosen in an ad hoc fashion. Implicit
assumption is that input behaves well.

2 May work well for aircraft control. Susceptible to denial of
service attack in routing.

Parameters: N = |U|, m = |T |, n = |S|
1 H is a family of hash functions: each function h ∈ H should

be efficient to evaluate (that is, to compute h(x)).
2 h is chosen randomly from H (typically uniformly at random).

Implicitly assumes that H allows an efficient sampling.
3 Randomized guarantee: should have the property that for any

fixed set S ⊆ U of size m the expected number of collisions for
a function chosen from H should be “small”. Here the
expectation is over the randomness in choice of h.

Ruta (UIUC) CS473 32 Spring 2018 32 / 53

Picking a hash function

1 Hash function are often chosen in an ad hoc fashion. Implicit
assumption is that input behaves well.

2 May work well for aircraft control. Susceptible to denial of
service attack in routing.

Parameters: N = |U|, m = |T |, n = |S|
1 H is a family of hash functions: each function h ∈ H should

be efficient to evaluate (that is, to compute h(x)).

2 h is chosen randomly from H (typically uniformly at random).
Implicitly assumes that H allows an efficient sampling.

3 Randomized guarantee: should have the property that for any
fixed set S ⊆ U of size m the expected number of collisions for
a function chosen from H should be “small”. Here the
expectation is over the randomness in choice of h.

Ruta (UIUC) CS473 32 Spring 2018 32 / 53

Picking a hash function

1 Hash function are often chosen in an ad hoc fashion. Implicit
assumption is that input behaves well.

2 May work well for aircraft control. Susceptible to denial of
service attack in routing.

Parameters: N = |U|, m = |T |, n = |S|
1 H is a family of hash functions: each function h ∈ H should

be efficient to evaluate (that is, to compute h(x)).
2 h is chosen randomly from H (typically uniformly at random).

Implicitly assumes that H allows an efficient sampling.

3 Randomized guarantee: should have the property that for any
fixed set S ⊆ U of size m the expected number of collisions for
a function chosen from H should be “small”. Here the
expectation is over the randomness in choice of h.

Ruta (UIUC) CS473 32 Spring 2018 32 / 53

Picking a hash function

1 Hash function are often chosen in an ad hoc fashion. Implicit
assumption is that input behaves well.

2 May work well for aircraft control. Susceptible to denial of
service attack in routing.

Parameters: N = |U|, m = |T |, n = |S|
1 H is a family of hash functions: each function h ∈ H should

be efficient to evaluate (that is, to compute h(x)).
2 h is chosen randomly from H (typically uniformly at random).

Implicitly assumes that H allows an efficient sampling.
3 Randomized guarantee: should have the property that for any

fixed set S ⊆ U of size m the expected number of collisions for
a function chosen from H should be “small”. Here the
expectation is over the randomness in choice of h.

Ruta (UIUC) CS473 32 Spring 2018 32 / 53

Picking a hash function

Question: Why not let H be the set of all functions from U to
{0, 1, . . . ,m − 1}?

1 Too many functions! A random function has high complexity!
of functions: M = m|U|.
Bits to encode such a function ≈ log M = |U| log m.

Question: Are there good and compact families H?

1 Yes... But what it means for H to be good and compact.

Ruta (UIUC) CS473 33 Spring 2018 33 / 53

Picking a hash function

Question: Why not let H be the set of all functions from U to
{0, 1, . . . ,m − 1}?

1 Too many functions! A random function has high complexity!
of functions: M = m|U|.
Bits to encode such a function ≈ log M = |U| log m.

Question: Are there good and compact families H?

1 Yes... But what it means for H to be good and compact.

Ruta (UIUC) CS473 33 Spring 2018 33 / 53

Picking a hash function

Question: Why not let H be the set of all functions from U to
{0, 1, . . . ,m − 1}?

1 Too many functions! A random function has high complexity!
of functions: M = m|U|.
Bits to encode such a function ≈ log M = |U| log m.

Question: Are there good and compact families H?

1 Yes... But what it means for H to be good and compact.

Ruta (UIUC) CS473 33 Spring 2018 33 / 53

Picking a hash function

Question: Why not let H be the set of all functions from U to
{0, 1, . . . ,m − 1}?

1 Too many functions! A random function has high complexity!
of functions: M = m|U|.
Bits to encode such a function ≈ log M = |U| log m.

Question: Are there good and compact families H?

1 Yes... But what it means for H to be good and compact.

Ruta (UIUC) CS473 33 Spring 2018 33 / 53

Uniform hashing

Question: What are good properties of H in distributing data?

1 Consider any element x ∈ U . If h ∈ H is picked randomly then
x should go into a random slot in T . In other words
Pr[h(x) = i] = 1/m for every 0 ≤ i < m. (Uniform)

2 Consider any two distinct elements x, y ∈ U . Then if h ∈ H is
picked randomly then the probability of a collision between x
and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

3 Second property is stronger than the first and the crucial issue.

Definition
A family of hash function H is (2-)universal if for all distinct
x, y ∈ U , Prh[h(x) = h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Ruta (UIUC) CS473 34 Spring 2018 34 / 53

Uniform hashing

Question: What are good properties of H in distributing data?

1 Consider any element x ∈ U . If h ∈ H is picked randomly then
x should go into a random slot in T . In other words
Pr[h(x) = i] = 1/m for every 0 ≤ i < m. (Uniform)

2 Consider any two distinct elements x, y ∈ U . Then if h ∈ H is
picked randomly then the probability of a collision between x
and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

3 Second property is stronger than the first and the crucial issue.

Definition
A family of hash function H is (2-)universal if for all distinct
x, y ∈ U , Prh[h(x) = h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Ruta (UIUC) CS473 34 Spring 2018 34 / 53

Uniform hashing

Question: What are good properties of H in distributing data?

1 Consider any element x ∈ U . If h ∈ H is picked randomly then
x should go into a random slot in T . In other words
Pr[h(x) = i] = 1/m for every 0 ≤ i < m. (Uniform)

2 Consider any two distinct elements x, y ∈ U . Then if h ∈ H is
picked randomly then the probability of a collision between x
and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

3 Second property is stronger than the first and the crucial issue.

Definition
A family of hash function H is (2-)universal if for all distinct
x, y ∈ U , Prh[h(x) = h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Ruta (UIUC) CS473 34 Spring 2018 34 / 53

Uniform hashing

Question: What are good properties of H in distributing data?

1 Consider any element x ∈ U . If h ∈ H is picked randomly then
x should go into a random slot in T . In other words
Pr[h(x) = i] = 1/m for every 0 ≤ i < m. (Uniform)

2 Consider any two distinct elements x, y ∈ U . Then if h ∈ H is
picked randomly then the probability of a collision between x
and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

3 Second property is stronger than the first and the crucial issue.

Definition
A family of hash function H is (2-)universal if for all distinct
x, y ∈ U , Prh[h(x) = h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Ruta (UIUC) CS473 34 Spring 2018 34 / 53

Uniform hashing

Question: What are good properties of H in distributing data?

1 Consider any element x ∈ U . If h ∈ H is picked randomly then
x should go into a random slot in T . In other words
Pr[h(x) = i] = 1/m for every 0 ≤ i < m. (Uniform)

2 Consider any two distinct elements x, y ∈ U . Then if h ∈ H is
picked randomly then the probability of a collision between x
and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

3 Second property is stronger than the first and the crucial issue.

Definition
A family of hash function H is (2-)universal if for all distinct
x, y ∈ U , Prh[h(x) = h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!
Ruta (UIUC) CS473 34 Spring 2018 34 / 53

Analyzing Universal Hashing

1 T is hash table of size m.

2 S ⊆ U is a fixed set of size ≤ m.

3 h is chosen randomly from a universal hash family H.

4 x is a fixed element of U .

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Ruta (UIUC) CS473 35 Spring 2018 35 / 53

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

1 The time to look up x is the size of the list at T [h(x)]: same
as the number of elements in S that collide with x under h.

2 Let `(x) be this number. We want E[`(x)]

3 For y ∈ S let Ay be the event that x, y collide and Dy be the
corresponding indicator variable.

Ruta (UIUC) CS473 36 Spring 2018 36 / 53

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

1 The time to look up x is the size of the list at T [h(x)]: same
as the number of elements in S that collide with x under h.

2 Let `(x) be this number. We want E[`(x)]

3 For y ∈ S let Ay be the event that x, y collide and Dy be the
corresponding indicator variable.

Ruta (UIUC) CS473 36 Spring 2018 36 / 53

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

1 The time to look up x is the size of the list at T [h(x)]: same
as the number of elements in S that collide with x under h.

2 Let `(x) be this number. We want E[`(x)]

3 For y ∈ S let Ay be the event that x, y collide and Dy be the
corresponding indicator variable.

Ruta (UIUC) CS473 36 Spring 2018 36 / 53

Analyzing Universal Hashing
Continued...

Number of elements colliding with x : `(x) =
∑

y∈S Dy .

⇒ E[`(x)] =
∑
y∈S

E[Dy] linearity of expectation

=
∑
y∈S

Pr [h(x) = h(y)]

=
∑
y∈S

1

m
(since H is a universal hash family)

= |S|/m

=
n
m

≤ 1 (if |S| ≤ m)

Ruta (UIUC) CS473 37 Spring 2018 37 / 53

Analyzing Universal Hashing
Continued...

Number of elements colliding with x : `(x) =
∑

y∈S Dy .

⇒ E[`(x)] =
∑
y∈S

E[Dy] linearity of expectation

=
∑
y∈S

Pr [h(x) = h(y)]

=
∑
y∈S

1

m
(since H is a universal hash family)

= |S|/m

=
n
m

≤ 1 (if |S| ≤ m)

Ruta (UIUC) CS473 37 Spring 2018 37 / 53

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

1 O(1) expected time also holds for insertion.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

3 Worst-case: look up time can be large! How large?
Ω(log n/ log log n)
[Lower bound holds even under stronger assumptions.]

Ruta (UIUC) CS473 38 Spring 2018 38 / 53

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

1 O(1) expected time also holds for insertion.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

3 Worst-case: look up time can be large! How large?
Ω(log n/ log log n)
[Lower bound holds even under stronger assumptions.]

Ruta (UIUC) CS473 38 Spring 2018 38 / 53

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

1 O(1) expected time also holds for insertion.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

3 Worst-case: look up time can be large! How large?

Ω(log n/ log log n)
[Lower bound holds even under stronger assumptions.]

Ruta (UIUC) CS473 38 Spring 2018 38 / 53

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

1 O(1) expected time also holds for insertion.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

3 Worst-case: look up time can be large! How large?
Ω(log n/ log log n)
[Lower bound holds even under stronger assumptions.]

Ruta (UIUC) CS473 38 Spring 2018 38 / 53

Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions
H : Set of all possible functions h : U → {0, . . . ,m − 1}.

Universal.

|H| = m|U|

representing h requires |U| log m – Not O(1)!

We need compactly representable universal family.

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions
H : Set of all possible functions h : U → {0, . . . ,m − 1}.

Universal.

|H| = m|U|

representing h requires |U| log m – Not O(1)!

We need compactly representable universal family.

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions
H : Set of all possible functions h : U → {0, . . . ,m − 1}.

Universal.

|H| = m|U|

representing h requires |U| log m – Not O(1)!

We need compactly representable universal family.

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions
H : Set of all possible functions h : U → {0, . . . ,m − 1}.

Universal.

|H| = m|U|

representing h requires |U| log m – Not O(1)!

We need compactly representable universal family.

Ruta (UIUC) CS473 39 Spring 2018 39 / 53

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function
ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).
Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function
ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).

Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function
ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).
Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function
ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).
Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function
ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).
Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Ruta (UIUC) CS473 40 Spring 2018 40 / 53

Some math required...

Lemma (LemmaUnique)

Let p be a prime number, and Zp = {0, 1, . . . , p − 1}.
x : an integer number in Zp, x 6= 0
=⇒ There exists a unique y ∈ Zp s.t. xy = 1 mod p.

In other words: For every element there is a unique inverse.
=⇒ set Zp = {0, 1, . . . , p − 1} when working modulo p is a

field.

Ruta (UIUC) CS473 41 Spring 2018 41 / 53

Proof of LemmaUnique

Claim
Let p be a prime number. For any x, y , z ∈ {1, . . . , p − 1} s.t.
y 6= z , we have that xy mod p 6= xz mod p.

Proof.
Assume for the sake of contradiction xy mod p = xz mod p.
Then

x(y − z) = 0 mod p
=⇒ p divides x(y − z)

=⇒ p divides y − z
=⇒ y − z = 0 =⇒ y = z

And that is a contradiction.

Ruta (UIUC) CS473 42 Spring 2018 42 / 53

Proof of LemmaUnique

Claim
Let p be a prime number. For any x, y , z ∈ {1, . . . , p − 1} s.t.
y 6= z , we have that xy mod p 6= xz mod p.

Proof.
Assume for the sake of contradiction xy mod p = xz mod p.
Then

x(y − z) = 0 mod p
=⇒ p divides x(y − z)

=⇒ p divides y − z
=⇒ y − z = 0 =⇒ y = z

And that is a contradiction.

Ruta (UIUC) CS473 42 Spring 2018 42 / 53

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof.
By the above claim if xy = 1 mod p and xz = 1 mod p then
y = z . Hence uniqueness follows.

Existence. For any x ∈ {1, . . . , p − 1} we have that
{x ∗ 1 mod p, x ∗ 2 mod p, . . . , x ∗ (p − 1) mod p} =
{1, 2, . . . , p − 1}.
=⇒ There exists a number y ∈ {1, . . . , p − 1} such that
xy = 1 mod p.

Ruta (UIUC) CS473 43 Spring 2018 43 / 53

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof.
By the above claim if xy = 1 mod p and xz = 1 mod p then
y = z . Hence uniqueness follows.

Existence. For any x ∈ {1, . . . , p − 1} we have that
{x ∗ 1 mod p, x ∗ 2 mod p, . . . , x ∗ (p − 1) mod p} =

{1, 2, . . . , p − 1}.
=⇒ There exists a number y ∈ {1, . . . , p − 1} such that
xy = 1 mod p.

Ruta (UIUC) CS473 43 Spring 2018 43 / 53

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof.
By the above claim if xy = 1 mod p and xz = 1 mod p then
y = z . Hence uniqueness follows.

Existence. For any x ∈ {1, . . . , p − 1} we have that
{x ∗ 1 mod p, x ∗ 2 mod p, . . . , x ∗ (p − 1) mod p} =
{1, 2, . . . , p − 1}.
=⇒ There exists a number y ∈ {1, . . . , p − 1} such that
xy = 1 mod p.

Ruta (UIUC) CS473 43 Spring 2018 43 / 53

Proof of the Theorem: Outline

ha,b(x) = ((ax + b) mod p) mod m).

Theorem
H = {ha,b | a, b ∈ Zp, a 6= 0} is universal.

Proof.
Fix x, y ∈ U . We need to show that
Prha,b∼H[ha,b(x) = ha,b(y)] ≤ 1/m. Note that |H| = p(p − 1).

1 Let (a, b) (equivalently ha,b) be bad for x, y if
ha,b(x) = ha,b(y).

2 Claim: Number of bad (a, b) is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.

Ruta (UIUC) CS473 44 Spring 2018 44 / 53

Proof of the Theorem: Outline

ha,b(x) = ((ax + b) mod p) mod m).

Theorem
H = {ha,b | a, b ∈ Zp, a 6= 0} is universal.

Proof.
Fix x, y ∈ U . We need to show that
Prha,b∼H[ha,b(x) = ha,b(y)] ≤ 1/m. Note that |H| = p(p − 1).

1 Let (a, b) (equivalently ha,b) be bad for x, y if
ha,b(x) = ha,b(y).

2 Claim: Number of bad (a, b) is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.

Ruta (UIUC) CS473 44 Spring 2018 44 / 53

Intuition for the Claim

ga,b(x) = (ax + b) mod p, ha,b(x) = (ga,b(x)) mod m
First map x 6= y to r = ga,b(x) and s = ga,b(y).

LemmaUnique =⇒ r 6= s
0 1 2 3 x

(x, y)

y

As (a, b) varies, (r , s) takes all possible p(p − 1) values. Since
(a, b) is picked u.a.r., every value of (r , s) has equal probability.

Ruta (UIUC) CS473 45 Spring 2018 45 / 53

Intuition for the Claim

ga,b(x) = (ax + b) mod p, ha,b(x) = (ga,b(x)) mod m
First map x 6= y to r = ga,b(x) and s = ga,b(y).

LemmaUnique =⇒ r 6= s
0 1 2 3 x

(x, y)

y

→
(r, s)

0 1 2 3 r

s

As (a, b) varies, (r , s) takes all possible p(p − 1) values. Since
(a, b) is picked u.a.r., every value of (r , s) has equal probability.

Ruta (UIUC) CS473 45 Spring 2018 45 / 53

Intuition for the Claim

ga,b(x) = (ax + b) mod p, ha,b(x) = (ga,b(x)) mod m

(r, s)

0 1 2 3 r

s

=⇒mod m

Ruta (UIUC) CS473 45 Spring 2018 45 / 53

Intuition for the Claim

ga,b(x) = (ax + b) mod p, ha,b(x) = (ga,b(x)) mod m

=⇒mod m

Ruta (UIUC) CS473 45 Spring 2018 45 / 53

Intuition for the Claim

ga,b(x) = (ax + b) mod p, ha,b(x) = (ga,b(x)) mod m
1 First part of mapping maps

(x, y) to a random location
(ga,b(x), ga,b(y)) in the
“matrix”.

2 (ga,b(x), ga,b(y)) is not on
main diagonal.

3 All blue locations are “bad” –
map by mod m to a
location of collision.

4 But... at most 1/m fraction
of allowable locations in the
matrix are bad.

Ruta (UIUC) CS473 45 Spring 2018 45 / 53

We need
to show at most 1/m fraction of bad ha,b

ha,b(x) = (((ax + b) mod p) modm)
2 lemmas ...

Fix x 6= y ∈ Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

1 1-to-1 correspondence between p(p − 1) pairs of (a, b)
(equivalently ha,b) and p(p − 1) pairs of (r , s).

2 Out of all possible p(p − 1) pairs of (r , s), at most
p(p − 1)/m fraction satisfies r mod m = s mod m.

Ruta (UIUC) CS473 46 Spring 2018 46 / 53

We need
to show at most 1/m fraction of bad ha,b

ha,b(x) = (((ax + b) mod p) modm)
2 lemmas ...

Fix x 6= y ∈ Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

1 1-to-1 correspondence between p(p − 1) pairs of (a, b)
(equivalently ha,b) and p(p − 1) pairs of (r , s).

2 Out of all possible p(p − 1) pairs of (r , s), at most
p(p − 1)/m fraction satisfies r mod m = s mod m.

Ruta (UIUC) CS473 46 Spring 2018 46 / 53

We need
to show at most 1/m fraction of bad ha,b

ha,b(x) = (((ax + b) mod p) modm)
2 lemmas ...

Fix x 6= y ∈ Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

1 1-to-1 correspondence between p(p − 1) pairs of (a, b)
(equivalently ha,b) and p(p − 1) pairs of (r , s).

2 Out of all possible p(p − 1) pairs of (r , s), at most
p(p − 1)/m fraction satisfies r mod m = s mod m.

Ruta (UIUC) CS473 46 Spring 2018 46 / 53

Some Lemmas

Lemma
If x 6= y then for any a, b ∈ Zp such that a 6= 0, we have

ax + b mod p 6= ay + b mod p.

Proof.
Suppose not

ax + b mod p = ay + b mod p ⇒ a(x − y) mod p = 0

But, a 6= 0 and (x − y) 6= 0. And a and (x − y) cannot divide p
since p is prime and a < p and (x − y) < p. Contradiction!

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

Some Lemmas

Lemma
If x 6= y then for any a, b ∈ Zp such that a 6= 0, we have

ax + b mod p 6= ay + b mod p.

Proof.
Suppose not

ax + b mod p = ay + b mod p ⇒ a(x − y) mod p = 0

But, a 6= 0 and (x − y) 6= 0. And a and (x − y) cannot divide p
since p is prime and a < p and (x − y) < p. Contradiction!

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

Some Lemmas

Lemma
If x 6= y then for any a, b ∈ Zp such that a 6= 0, we have

ax + b mod p 6= ay + b mod p.

Proof.
Suppose not

ax + b mod p = ay + b mod p ⇒ a(x − y) mod p = 0

But, a 6= 0 and (x − y) 6= 0.

And a and (x − y) cannot divide p
since p is prime and a < p and (x − y) < p. Contradiction!

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

Some Lemmas

Lemma
If x 6= y then for any a, b ∈ Zp such that a 6= 0, we have

ax + b mod p 6= ay + b mod p.

Proof.
Suppose not

ax + b mod p = ay + b mod p ⇒ a(x − y) mod p = 0

But, a 6= 0 and (x − y) 6= 0. And a and (x − y) cannot divide p
since p is prime and a < p and (x − y) < p. Contradiction!

Ruta (UIUC) CS473 47 Spring 2018 47 / 53

Some Lemmas

Lemma
If x 6= y then for each (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 there is exactly one a, b such that

ax + b mod p = r and ay + b mod p = s .

Proof.
Solve the two equations:

ax + b = r mod p and ay + b = s mod p

We get a = r−s
x−y mod p and b = r − ax mod p.

One-to-one correspondence between (a, b) and (r , s)

Ruta (UIUC) CS473 48 Spring 2018 48 / 53

Some Lemmas

Lemma
If x 6= y then for each (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 there is exactly one a, b such that

ax + b mod p = r and ay + b mod p = s .

Proof.
Solve the two equations:

ax + b = r mod p and ay + b = s mod p

We get a = r−s
x−y mod p and b = r − ax mod p.

One-to-one correspondence between (a, b) and (r , s)

Ruta (UIUC) CS473 48 Spring 2018 48 / 53

Understanding the hashing

Once we fix a and b, and we are given a value x , we compute the
hash value of x in two stages:

1 Compute: r ← (ax + b) mod p.

2 Fold: r ′ ← r mod m

Collision...
Given two distinct values x and y they might collide only because of
folding.

Lemma
not equal pairs (r , s) of Zp × Zp that are folded to the same
number is p(p − 1)/m.

Ruta (UIUC) CS473 49 Spring 2018 49 / 53

Folding numbers

Lemma
pairs (r , s) ∈ Zp × Zp such that r 6= s and r mod m = s
mod m (folded to the same number) is p(p − 1)/m.

Proof.

Consider a pair (r , s) ∈ {0, 1, . . . , p − 1}2 s.t. r 6= s. Fix r :

1 a = r mod m.

2 There are dp/me values of s that fold into a. That is

r mod m = s mod m.
3 One of them is when r = s.

4 =⇒ # of colliding pairs (dp/me − 1)p ≤ (p − 1)p/m

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

Folding numbers

Lemma
pairs (r , s) ∈ Zp × Zp such that r 6= s and r mod m = s
mod m (folded to the same number) is p(p − 1)/m.

Proof.

Consider a pair (r , s) ∈ {0, 1, . . . , p − 1}2 s.t. r 6= s. Fix r :

1 a = r mod m.

2 There are dp/me values of s that fold into a. That is

r mod m = s mod m.
3 One of them is when r = s.

4 =⇒ # of colliding pairs

(dp/me − 1)p ≤ (p − 1)p/m

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

Folding numbers

Lemma
pairs (r , s) ∈ Zp × Zp such that r 6= s and r mod m = s
mod m (folded to the same number) is p(p − 1)/m.

Proof.

Consider a pair (r , s) ∈ {0, 1, . . . , p − 1}2 s.t. r 6= s. Fix r :

1 a = r mod m.

2 There are dp/me values of s that fold into a. That is

r mod m = s mod m.
3 One of them is when r = s.

4 =⇒ # of colliding pairs (dp/me − 1)p ≤ (p − 1)p/m

Ruta (UIUC) CS473 50 Spring 2018 50 / 53

Proof of Claim
of bad pairs is p(p− 1)/m

Proof.
Let a, b ∈ Zp such that a 6= 0 and ha,b(x) = ha,b(y).

1 Let r = ax + b mod p and s = ay + b mod p.

2 Collision if and only if r mod m = s mod m.

3 (Folding error): Number of pairs (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 and r mod m = s mod m is
p(p − 1)/m.

4 From previous lemma there is one-to-one correspondence
between (a, b) and (r , s). Hence total number of bad (a, b)
pairs is p(p − 1)/m.

Prob of x and y to collide: # bad (a, b) pairs

#(a, b) pairs
= p(p−1)/m

p(p−1)
= 1

m .

Ruta (UIUC) CS473 51 Spring 2018 51 / 53

Proof of Claim
of bad pairs is p(p− 1)/m

Proof.
Let a, b ∈ Zp such that a 6= 0 and ha,b(x) = ha,b(y).

1 Let r = ax + b mod p and s = ay + b mod p.

2 Collision if and only if r mod m = s mod m.

3 (Folding error): Number of pairs (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 and r mod m = s mod m is
p(p − 1)/m.

4 From previous lemma there is one-to-one correspondence
between (a, b) and (r , s). Hence total number of bad (a, b)
pairs is p(p − 1)/m.

Prob of x and y to collide: # bad (a, b) pairs

#(a, b) pairs
= p(p−1)/m

p(p−1)
= 1

m .

Ruta (UIUC) CS473 51 Spring 2018 51 / 53

Rehashing, amortization and...
... making the hash table dynamic

So far we assumed fixed S of size ' m.
Question: What happens as items are inserted and deleted?

1 If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

2 If |S| stays around ' m but incurs many insertions and
deletions then the initial random hash function is no longer
random enough!

Solution: Rebuild hash table periodically!

1 Choose a new table size based on current number of elements in
table.

2 Choose a new random hash function and rehash the elements.

3 Discard old table and hash function.

Question: When to rebuild? How expensive?

Ruta (UIUC) CS473 52 Spring 2018 52 / 53

Rehashing, amortization and...
... making the hash table dynamic

So far we assumed fixed S of size ' m.
Question: What happens as items are inserted and deleted?

1 If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

2 If |S| stays around ' m but incurs many insertions and
deletions then the initial random hash function is no longer
random enough!

Solution: Rebuild hash table periodically!

1 Choose a new table size based on current number of elements in
table.

2 Choose a new random hash function and rehash the elements.

3 Discard old table and hash function.

Question: When to rebuild? How expensive?
Ruta (UIUC) CS473 52 Spring 2018 52 / 53

Rebuilding the hash table

1 Start with table size m where m is some estimate of |S| (can
be some large constant).

2 If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

3 If |S| stays roughly the same but more than c|S| operations on
table for some chosen constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations.
Rebuilding ensures O(1) expected analysis holds even when S
changes. Hence O(1) expected look up/insert/delete time dynamic
data dictionary data structure!

Ruta (UIUC) CS473 53 Spring 2018 53 / 53

	Randomized QuickSort (Contd.)
	Balls and Bins
	Hash Tables
	Introduction
	Universal Hashing

