CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

CS 473: Algorithms, Spring 2018

Universal Hashing

Lecture 10 Feb 15, 2018

Most slides are courtesy Prof. Chekuri

Part I

Hash Tables

Dictionary Data Structure

- **(1)** \mathcal{U} : universe of keys with total order: numbers, strings, etc.
- ② Data structure to store a subset $S \subseteq \mathcal{U}$
- **Operations:**
 - Search/look up: given $x \in \mathcal{U}$ is $x \in S$?
 - **2** Insert: given $x \not\in S$ add x to S.
 - **3 Delete**: given $x \in S$ delete x from S
- Static structure: S given in advance or changes very infrequently, main operations are lookups.
- Oynamic structure: S changes rapidly so inserts and deletes as important as lookups.

Can we do everything in O(1) time?

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \ldots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Hash Table data structure:

- A (hash) table/array **T** of size **m** (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \ldots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \ldots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element x ∈ S hashes to a distinct slot in T. Store x in slot h(x)
- **2** Lookup: Given $y \in U$ check if T[h(y)] = y. O(1) time!

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation: ● Each element x ∈ S hashes to a distinct slot in T. Store x in slot h(x)

2 Lookup: Given $y \in U$ check if T[h(y)] = y. O(1) time!

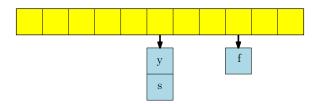
Collisions unavoidable if $|\mathcal{T}| < |\mathcal{U}|$. Several techniques to handle them.

Handling Collisions: Chaining

Collision: h(x) = h(y) for some $x \neq y$.

Chaining/Open hashing to handle collisions:

- For each slot *i* store all items hashed to slot *i* in a linked list.
 T[*i*] points to the linked list
- **2 Lookup**: to find if $y \in \mathcal{U}$ is in \mathcal{T} , check the linked list at $\mathcal{T}[h(y)]$. Time proportion to size of linked list.



Does hashing give O(1) time per operation for dictionaries?

Ruta (UIUC)	CS473 6	Spring 2018 6 / 32

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i.

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot *i*. Any *S* containing all of these is a **very very bad set for** *h*!

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot *i*. Any *S* containing all of these is a very very bad set for *h*! Such a bad set may lead to O(m) lookup time!

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot *i*. Any *S* containing all of these is a very very bad set for *h*! Such a bad set may lead to O(m) lookup time!

Lesson:

- Consider a family *H* of hash functions with *good properties* and choose *h* uniformly at random.
- Guarantees: small # collisions in expectation for a given S.
- ${\cal H}$ should allow efficient sampling.

Question: What are good properties of \mathcal{H} in distributing data?

Question: What are good properties of \mathcal{H} in distributing data?

Uniform: Consider any element x ∈ U. Then if h ∈ H is picked randomly then x should go into a random slot in T. In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

Question: What are good properties of \mathcal{H} in distributing data?

- Uniform: Consider any element x ∈ U. Then if h ∈ H is picked randomly then x should go into a random slot in T. In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.
- Oniversal: Consider any two distinct elements x, y ∈ U. Then if h ∈ H is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words Pr[h(x) = h(y)] = 1/m (cannot be smaller).

Question: What are good properties of \mathcal{H} in distributing data?

- Uniform: Consider any element x ∈ U. Then if h ∈ H is picked randomly then x should go into a random slot in T. In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.
- Oniversal: Consider any two distinct elements x, y ∈ U. Then if h ∈ H is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words Pr[h(x) = h(y)] = 1/m (cannot be smaller).
- Second property is stronger than the first and the crucial issue.

Definition

A family of hash function \mathcal{H} is (2-)**universal** if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] = 1/m$ where m is the table size.

Analyzing Universal Hashing

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: O(n/m).

Analyzing Universal Hashing

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

- O(1) expected time also holds for insertion.
- Analysis assumes static set S but holds as long as S is a set formed with at most O(m) insertions and deletions.
- Worst-case: look up time can be large! How large?
 Ω(log n/ log log n)

Parameters: $N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}|$

Choose a prime number p > N. Define function $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.

2 Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ $(\mathbb{Z}_p = \{0, 1, \dots, p-1\}).$

Parameters: $N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}|$

- Choose a prime number p > N. Define function $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- 2 Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ $(\mathbb{Z}_p = \{0, 1, \dots, p-1\})$. Note that $|\mathcal{H}| = p(p-1)$.

Parameters: $N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}|$

- Choose a prime number p > N. Define function $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- 2 Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ $(\mathbb{Z}_p = \{0, 1, \dots, p-1\})$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

 ${\cal H}$ is a universal hash family.

Parameters: $N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}|$

- Choose a prime number p > N. Define function $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- 2 Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ $(\mathbb{Z}_p = \{0, 1, \dots, p-1\})$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

 ${\cal H}$ is a universal hash family.

Comments:

- $h_{a,b}$ can be evaluated in O(1) time.
- 2 Easy to store, *i.e.*, just store a, b. Easy to sample.

Lemma (LemmaUnique)

Let p be a prime number, and $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$. x: an integer number in \mathbb{Z}_p , $x \neq 0$ \implies There exists a unique $y \in \mathbb{Z}_p$ s.t. $xy = 1 \mod p$.

In other words: For every element there is a unique inverse. \implies set $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ when working modulo p is a field.

Claim

Let p be a prime number. For any $x, y, z \in \{1, ..., p-1\}$ s.t. $y \neq z$, we have that $xy \mod p \neq xz \mod p$.

Claim

Let p be a prime number. For any $x, y, z \in \{1, ..., p-1\}$ s.t. $y \neq z$, we have that $xy \mod p \neq xz \mod p$.

Proof.

Assume for the sake of contradiction $xy \mod p = xz \mod p$. Then

 $\begin{array}{rcl} x(y-z) = 0 \mod p \\ \implies & p \text{ divides } x(y-z) \\ \implies & p \text{ divides } x & \text{OR } p \text{ divides } (y-x) & (\text{why?}) \\ \implies & y-z=0 \implies y=z \end{array}$

And that is a contradiction.

Lemma (LemmaUnique)

Let **p** be a prime number,

- x: an integer number in $\{1, \ldots, p-1\}$.
- \implies There exists a unique y s.t. $xy = 1 \mod p$.

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then

y = z. Hence uniqueness follows.

Lemma (LemmaUnique)

Let **p** be a prime number,

- x: an integer number in $\{1, \ldots, p-1\}$.
- \implies There exists a unique y s.t. $xy = 1 \mod p$.

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

Existence. For any $x \in \{1, \dots, p-1\}$ we have that $\{x * 1 \mod p, x * 2 \mod p, \dots, x * (p-1) \mod p\} =$

Lemma (LemmaUnique)

Let **p** be a prime number,

- x: an integer number in $\{1, \ldots, p-1\}$.
- \implies There exists a unique y s.t. $xy = 1 \mod p$.

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

Existence. For any $x \in \{1, ..., p-1\}$ we have that $\{x * 1 \mod p, x * 2 \mod p, ..., x * (p-1) \mod p\} = \{1, 2, ..., p-1\}.$ \implies There exists a number $y \in \{1, ..., p-1\}$ such that $xy = 1 \mod p$.

 $h_{a,b}(x) = ((ax + b) \mod p) \mod m).$

Theorem

 $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ is universal.

Proof.

Fix $x, y \in \mathcal{U}$. Show that $\Pr_{h_{a,b} \sim \mathcal{H}}[h_{a,b}(x) = h_{a,b}(y)] \leq 1/m$. Note that $|\mathcal{H}| = p(p-1)$.

 $h_{a,b}(x) = ((ax + b) \mod p) \mod m).$

Theorem

$$\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$$
 is universal.

Proof.

Fix $x, y \in \mathcal{U}$. Show that $\Pr_{h_{a,b} \sim \mathcal{H}}[h_{a,b}(x) = h_{a,b}(y)] \leq 1/m$. Note that $|\mathcal{H}| = p(p-1)$.

 Let (a, b) (equivalently h_{a,b}) be bad for x, y if h_{a,b}(x) = h_{a,b}(y).

 $h_{a,b}(x) = ((ax + b) \mod p) \mod m).$

Theorem

 $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ is universal.

Proof.

Fix $x, y \in \mathcal{U}$. Show that $\Pr_{h_{a,b} \sim \mathcal{H}}[h_{a,b}(x) = h_{a,b}(y)] \leq 1/m$. Note that $|\mathcal{H}| = p(p-1)$.

Let (a, b) (equivalently h_{a,b}) be bad for x, y if h_{a,b}(x) = h_{a,b}(y). At most howmany bad h is ok?

 $h_{a,b}(x) = ((ax + b) \mod p) \mod m).$

Theorem

 $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ is universal.

Proof.

Fix $x, y \in \mathcal{U}$. Show that $\Pr_{h_{a,b} \sim \mathcal{H}}[h_{a,b}(x) = h_{a,b}(y)] \leq 1/m$. Note that $|\mathcal{H}| = p(p-1)$.

- Let (a, b) (equivalently $h_{a,b}$) be bad for x, y if $h_{a,b}(x) = h_{a,b}(y)$. At most howmany bad h is ok?
- **3** Claim: Number of bad (a, b) is at most p(p-1)/m.

 $h_{a,b}(x) = ((ax + b) \mod p) \mod m).$

Theorem

 $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$ is universal.

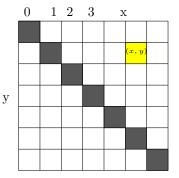
Proof.

Fix $x, y \in \mathcal{U}$. Show that $\Pr_{h_{a,b} \sim \mathcal{H}}[h_{a,b}(x) = h_{a,b}(y)] \leq 1/m$. Note that $|\mathcal{H}| = p(p-1)$.

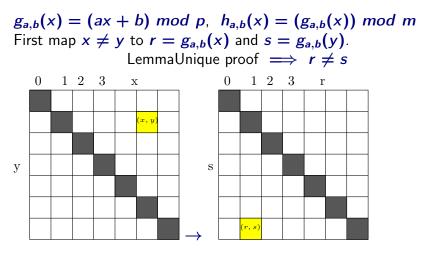
- Let (a, b) (equivalently h_{a,b}) be bad for x, y if h_{a,b}(x) = h_{a,b}(y). At most howmany bad h is ok?
- **2** Claim: Number of bad (a, b) is at most p(p-1)/m.
- Solution Total number of hash functions is p(p − 1) and hence probability of a collision is ≤ 1/m.

Intuition for the Claim

 $g_{a,b}(x) = (ax + b) \mod p, \quad h_{a,b}(x) = (g_{a,b}(x)) \mod m$ First map $x \neq y$ to $r = g_{a,b}(x)$ and $s = g_{a,b}(y)$. LemmaUnique proof $\implies r \neq s$

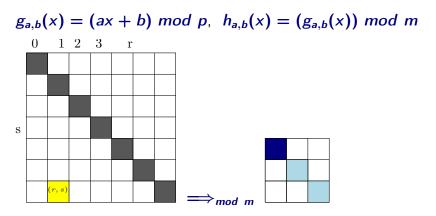


Intuition for the Claim

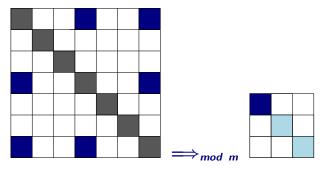


As (a, b) varies, (r, s) takes all possible p(p - 1) values. Since (a, b) is picked u.a.r., every value of (r, s) has equal probability.

Ruta (UIUC)



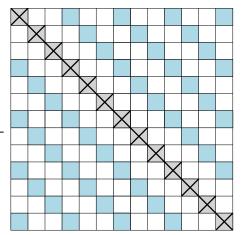
$g_{a,b}(x) = (ax + b) \mod p, \ h_{a,b}(x) = (g_{a,b}(x)) \mod m$



For a fixed $a \in \{0, \dots, m-1\}$ what is an upper bound on the size of set $\{s \in \{0, \dots, (p-1)\} \mid a = s \mod m\}$? (A) m. (B) m^2 . (C) p. (D) p/m. (E) Many. At least two.

$g_{a,b}(x) = (ax + b) \mod p, \ h_{a,b}(x) = (g_{a,b}(x)) \mod m$

- First part of mapping maps
 (x, y) to a random location
 (g_{a,b}(x), g_{a,b}(y)) in the
 "matrix".
- (g_{a,b}(x), g_{a,b}(y)) is not on main diagonal.
- All blue locations are "bad" map by mod m to a location of collision.
- But... at most 1/m fraction of allowable locations in the matrix are bad.



We need to show at most 1/m fraction of bad $h_{a,b}$

$h_{a,b}(x) = (((ax + b) \mod p) \mod m)$

2 lemmas ...

Fix $x \neq y \in \mathbb{Z}_p$, and let $r = (ax + b) \mod p$ and $s = (ay + b) \mod p$.

$h_{a,b}(x) = (((ax + b) \mod p) \mod m)$

2 lemmas ...

Fix $x \neq y \in \mathbb{Z}_p$, and let $r = (ax + b) \mod p$ and $s = (ay + b) \mod p$.

• 1-to-1 correspondence between p(p-1) pairs of (a, b) (equivalently $h_{a,b}$) and p(p-1) pairs of (r, s).

$h_{a,b}(x) = (((ax + b) \mod p) \mod m)$

2 lemmas ...

Fix $x \neq y \in \mathbb{Z}_p$, and let $r = (ax + b) \mod p$ and $s = (ay + b) \mod p$.

- 1-to-1 correspondence between p(p-1) pairs of (a, b) (equivalently $h_{a,b}$) and p(p-1) pairs of (r, s).
- Out of all possible p(p-1) pairs of (r, s), at most p(p-1)/m fraction satisfies $r \mod m = s \mod m$.

Lemma

If $x \neq y$ then for any $a, b \in \mathbb{Z}_p$ such that $a \neq 0$, we have $ax + b \mod p \neq ay + b \mod p$.

Lemma

If $x \neq y$ then for any $a, b \in \mathbb{Z}_p$ such that $a \neq 0$, we have $ax + b \mod p \neq ay + b \mod p$.

Proof.

Suppose not

 $ax + b \mod p = ay + b \mod p \Rightarrow a(x - y) \mod p = 0$

Lemma

If $x \neq y$ then for any $a, b \in \mathbb{Z}_p$ such that $a \neq 0$, we have $ax + b \mod p \neq ay + b \mod p$.

Proof.

Suppose not

 $ax + b \mod p = ay + b \mod p \Rightarrow a(x - y) \mod p = 0$ Since p is a prime, p divides either a or (x - y).

Lemma

If $x \neq y$ then for any $a, b \in \mathbb{Z}_p$ such that $a \neq 0$, we have $ax + b \mod p \neq ay + b \mod p$.

Proof.

Suppose not

 $ax + b \mod p = ay + b \mod p \Rightarrow a(x - y) \mod p = 0$ Since p is a prime, p divides either a or (x - y). But a < p and (x - y) < p, and hence a = 0 or (x - y) = 0. Contradiction!

Lemma

If $x \neq y$ then for each (r, s) such that $r \neq s$ and $0 \leq r, s \leq p - 1$ there is exactly one a, b such that $ax + b \mod p = r$ and $ay + b \mod p = s$

Proof.

Solve the two equations:

$$ax + b = r \mod p$$
 and $ay + b = s \mod p$

Lemma

If $x \neq y$ then for each (r, s) such that $r \neq s$ and $0 \leq r, s \leq p - 1$ there is exactly one a, b such that $ax + b \mod p = r$ and $ay + b \mod p = s$

Proof.Solve the two equations: $ax + b = r \mod p$ and $ay + b = s \mod p$ We get $a = \frac{r-s}{x-y} \mod p$ and $b = r - ax \mod p$.

One-to-one correspondence between (a, b) and (r, s)

Ruta (UIUC)

Understanding the hashing

Once we fix a and b, and we are given a value x, we compute the hash value of x in two stages:

- Compute: $r \leftarrow (ax + b) \mod p$.
- **2** Fold: $r' \leftarrow r \mod m$

Understanding the hashing

Once we fix a and b, and we are given a value x, we compute the hash value of x in two stages:

- Compute: $r \leftarrow (ax + b) \mod p$.
- **2** Fold: $r' \leftarrow r \mod m$

Collision...

Given two distinct values x and y they might collide only because of folding.

Lemma

not equal pairs (r, s) of $\mathbb{Z}_p \times \mathbb{Z}_p$ that are folded to the same number is p(p-1)/m.

Folding numbers

Lemma

pairs $(r, s) \in \mathbb{Z}_p \times \mathbb{Z}_p$ such that $r \neq s$ and $r \mod m = s$ mod m (folded to the same number) is p(p-1)/m.

Proof.

Consider a pair $(r, s) \in \{0, 1, \dots, p-1\}^2$ s.t. $r \neq s$. Fix r:

 $\bigcirc a = r \mod m.$

Folding numbers

Lemma

pairs $(r, s) \in \mathbb{Z}_p \times \mathbb{Z}_p$ such that $r \neq s$ and $r \mod m = s$ mod m (folded to the same number) is p(p-1)/m.

Proof.

Consider a pair $(r, s) \in \{0, 1, \dots, p-1\}^2$ s.t. $r \neq s$. Fix r:

- $a = r \mod m.$
- **2** There are $\lceil p/m \rceil$ values of *s* that fold into *a*. That is

$r \mod m = s \mod m$.

- One of them is when r = s.
- \implies # of colliding pairs

Folding numbers

Lemma

pairs $(r, s) \in \mathbb{Z}_p \times \mathbb{Z}_p$ such that $r \neq s$ and $r \mod m = s$ mod m (folded to the same number) is p(p-1)/m.

Proof.

Consider a pair $(r, s) \in \{0, 1, \dots, p-1\}^2$ s.t. $r \neq s$. Fix r:

- $a = r \mod m.$
- **2** There are $\lceil p/m \rceil$ values of *s* that fold into *a*. That is

$r \mod m = s \mod m$.

One of them is when r = s.

• \implies # of colliding pairs $(\lceil p/m \rceil - 1)p \le (p-1)p/m$

Proof of Claim # of bad pairs is p(p - 1)/m

Proof.

Let $a, b \in \mathbb{Z}_p$ such that $a \neq 0$ and $h_{a,b}(x) = h_{a,b}(y)$.

- Let $r = ax + b \mod p$ and $s = ay + b \mod p$.
- ② Collision if and only if $r \mod m = s \mod m$.
- (Folding error): Number of pairs (r, s) such that $r \neq s$ and $0 \leq r, s \leq p 1$ and $r \mod m = s \mod m$ is p(p-1)/m.
- From previous lemma there is one-to-one correspondence between (a, b) and (r, s). Hence total number of bad (a, b) pairs is p(p - 1)/m.

Proof of Claim # of bad pairs is p(p - 1)/m

Proof.

Let $a, b \in \mathbb{Z}_p$ such that $a \neq 0$ and $h_{a,b}(x) = h_{a,b}(y)$.

- Let $r = ax + b \mod p$ and $s = ay + b \mod p$.
- ② Collision if and only if $r \mod m = s \mod m$.
- (Folding error): Number of pairs (r, s) such that $r \neq s$ and $0 \leq r, s \leq p 1$ and $r \mod m = s \mod m$ is p(p-1)/m.
- From previous lemma there is one-to-one correspondence between (a, b) and (r, s). Hence total number of bad (a, b) pairs is p(p - 1)/m.

Prob of x and y t	o collide:	# bad (a, #(a, b)	b) pairs pairs	= ^p	$\frac{p(p-1)/m}{p(p-1)}$	$=\frac{1}{m}$.	
Ruta (UIUC)		CS473	21			Spring 2018	21 / 32

Look up Time

Say |S| = |T| = m. For $0 \le i \le m - 1$, $\ell(i)$: list of elements hashed to slot i in T.

Expected look up time

Since for
$$x \neq y$$
, $\Pr[h_{a,b}(x) = h_{a,b(y)}] = 1/m$, we get $E[|\ell(i)|] = |S|/m \le 1$.

Look up Time

Say |S| = |T| = m. For $0 \le i \le m - 1$, $\ell(i)$: list of elements hashed to slot *i* in *T*.

Expected look up time

Since for
$$x \neq y$$
, $\Pr[h_{a,b}(x) = h_{a,b(y)}] = 1/m$, we get $E[|\ell(i)|] = |S|/m \le 1$.

Expected worst case look up time

Like in Balls & Bins, $\mathbf{E}\left[\max_{i=0}^{m-1} |\ell(i)|\right] \ge O(\ln n / \ln \ln n).$

Look up Time

Say |S| = |T| = m. For $0 \le i \le m - 1$, $\ell(i)$: list of elements hashed to slot *i* in *T*.

Expected look up time

Since for $x \neq y$, $\Pr[h_{a,b}(x) = h_{a,b(y)}] = 1/m$, we get $E[|\ell(i)|] = |S|/m \leq 1$.

Expected worst case look up time

Like in Balls & Bins, $\mathbf{E}\left[\max_{i=0}^{m-1} |\ell(i)|\right] \ge O(\ln n / \ln \ln n).$

What if $|T| = m^2$ (# Bins is m^2)

Claim: If $|T| = m^2$, then $E\left[\max_{i=0}^{m-1} |\ell(i)|\right] = O(1)$.

Ruta (UIUC)

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data

• Do hashing once.

• If $Y_i = |\ell(i)| > 10$ then hash elements of $\ell(i)$ to a table of size Y_i^2 .

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data

- Do hashing once.
- If $Y_i = |\ell(i)| > 10$ then hash elements of $\ell(i)$ to a table of size Y_i^2 .

Lemma (Look-up)

Expected worst case look up time is O(1).

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data

• Do hashing once.

• If $Y_i = |\ell(i)| > 10$ then hash elements of $\ell(i)$ to a table of size Y_i^2 .

Lemma (Look-up)

Expected worst case look up time is O(1).

Lemma (Size)If |S| = O(m) then space usage of perfect hashing is O(m).Ruta (UIUC)CS473CS47323Spring 201823/32

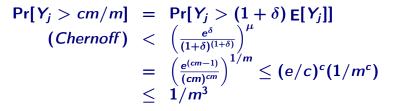
• **Pr**[*i*th ball lands in *j*th bin]

- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j.

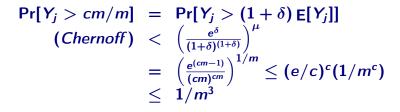
- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j. $E[Y_j] = 1/m$.

- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j. $E[Y_j] = 1/m$.
- For $c \geq 3$, let $\delta = cm 1$. $\Pr[Y_j > c]$?

- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j. $E[Y_j] = 1/m$.
- For $c \geq 3$, let $\delta = cm 1$. $\Pr[Y_j > c]$?



- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j. $E[Y_j] = 1/m$.
- For $c \geq 3$, let $\delta = cm 1$. $\Pr[Y_j > c]$?



• $\Pr\left[\max_{j=1}^{m^2} Y_j > c\right] \leq$

- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j. $E[Y_j] = 1/m$.
- For $c \geq 3$, let $\delta = cm 1$. $\Pr[Y_j > c]$?

$$\begin{aligned} \Pr[Y_j > cm/m] &= & \Pr[Y_j > (1+\delta) \operatorname{\mathsf{E}}[Y_j]] \\ (Chernoff) &< & \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \\ &= & \left(\frac{e^{(cm-1)}}{(cm)^{cm}}\right)^{1/m} \leq (e/c)^c (1/m^c) \\ &\leq & 1/m^3 \end{aligned}$$

•
$$\Pr\left[\max_{j=1}^{m^2} Y_j > c\right] \le 1/m$$
 (Union bound).
• $\Pr\left[\max_{j=1}^{m^2} Y_j \le c\right] \ge$

- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j. $E[Y_j] = 1/m$.
- For $c \geq 3$, let $\delta = cm 1$. $\Pr[Y_j > c]$?

$$\begin{aligned} \Pr[Y_j > cm/m] &= \Pr[Y_j > (1+\delta) \operatorname{\mathsf{E}}[Y_j]] \\ (Chernoff) &< \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \\ &= \left(\frac{e^{(cm-1)}}{(cm)^{cm}}\right)^{1/m} \le (e/c)^c (1/m^c) \\ &\le 1/m^3 \end{aligned}$$

- $\Pr\left[\max_{j=1}^{m^2} Y_j > c\right] \le 1/m$ (Union bound).
- $\Pr\left[\max_{j=1}^{m^2} Y_j \leq c\right] \geq 1 1/m (w.h.p.)$
- $E[\max_j Y_j] \leq$

- $\Pr[i$ th ball lands in jth bin] = $1/m^2$
- For a fixed bin j, $Y_j = \#$ balls in bin j. $E[Y_j] = 1/m$.
- For $c \geq 3$, let $\delta = cm 1$. $\Pr[Y_j > c]$?

$$\begin{aligned} \mathsf{Pr}[Y_j > cm/m] &= \mathsf{Pr}[Y_j > (1+\delta) \mathsf{E}[Y_j]] \\ (Chernoff) &< \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \\ &= \left(\frac{e^{(cm-1)}}{(cm)^{cm}}\right)^{1/m} \le (e/c)^c (1/m^c) \\ &\le 1/m^3 \end{aligned}$$

- $\Pr\left[\max_{j=1}^{m^2} Y_j > c\right] \le 1/m$ (Union bound).
- $\Pr\left[\max_{j=1}^{m^2} Y_j \leq c\right] \geq 1 1/m (w.h.p.)$
- $E[\max_{j} Y_{j}] \leq c + 1 = O(1).$

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data

• Do hashing once.

• If $Y_i = |\ell(i)| > 10$ then hash elements of $\ell(i)$ to a table of size Y_i^2 .

Lemma (Look-up)

Expected worst case look up time is O(1).

Lemma (Size)If |S| = O(m) then space usage of perfect hashing is O(m).Ruta (UIUC)CS47325Spring 201825/32

h: the primary hash function. $m_i = \# x$ in *S* such that h(x) = i.

h: the primary hash function. $m_i = \# x$ in *S* such that h(x) = i.

h: the primary hash function. $m_i = \# x$ in S such that h(x) = i.

Claim

$$\mathsf{E}\left[\sum_{i=0}^{m-1}m_i^2\right] < 3m$$
 where $m = |S|$.

h: the primary hash function. $m_i = \# x$ in S such that h(x) = i.

Claim

$$\mathsf{E}\left[\sum_{i=0}^{m-1}m_i^2\right] < 3m$$
 where $m = |S|$.

Proof.

h: the primary hash function. $m_i = \# x$ in S such that h(x) = i.

Claim

$$\mathsf{E}\left[\sum_{i=0}^{m-1}m_i^2\right] < 3m$$
 where $m = |S|$.

Proof.

$$\sum_i m_i^2 = \sum_i (\sum_{x \in S} [h(x) = i])^2$$

h: the primary hash function. $m_i = \# x$ in S such that h(x) = i.

Claim

$$\mathsf{E}\left[\sum_{i=0}^{m-1}m_i^2\right] < 3m$$
 where $m = |S|$.

Proof.

$$\sum_{i} m_{i}^{2} = \sum_{i} (\sum_{x \in S} [h(x) = i])^{2}$$

=
$$\sum_{i} (\sum_{x} [h(x) = i]^{2} + 2 \sum_{x < y} [h(x) = i] [h(y) = i])$$

h: the primary hash function. $m_i = \# x$ in S such that h(x) = i.

Claim

$$\mathsf{E}\left[\sum_{i=0}^{m-1}m_i^2\right] < 3m$$
 where $m = |S|$.

Proof.

$$\sum_{i} m_{i}^{2} = \sum_{i} (\sum_{x \in S} [h(x) = i])^{2}$$

=
$$\sum_{i} (\sum_{x} [h(x) = i]^{2} + 2 \sum_{x < y} [h(x) = i] [h(y) = i])$$

=
$$\sum_{x} (\sum_{i} [h(x) = i]) + 2 \sum_{x < y} \sum_{i} [h(x) = i] [h(y) = i]$$

h: the primary hash function. $m_i = \# x$ in S such that h(x) = i.

Claim

$$\mathbb{E}\left[\sum_{i=0}^{m-1}m_i^2\right] < 3m$$
 where $m = |S|$.

Proof.

$$\sum_{i} m_{i}^{2} = \sum_{i} (\sum_{x \in S} [h(x) = i])^{2}$$

= $\sum_{i} (\sum_{x} [h(x) = i]^{2} + 2 \sum_{x < y} [h(x) = i] [h(y) = i])$
= $\sum_{x} (\sum_{i} [h(x) = i]) + 2 \sum_{x < y} \sum_{i} [h(x) = i] [h(y) = i]$
= $\sum_{x} (1) + 2 \sum_{x < y} [h(x) = h(y)]$

h: the primary hash function. $m_i = \# x$ in S such that h(x) = i.

Claim

$$\mathbb{E}\left[\sum_{i=0}^{m-1}m_i^2\right] < 3m$$
 where $m = |S|$.

Proof.

Let [h(x) = i] represent indicator variable. $m_i = \sum_{x \in S} [h(x) = i]$.

$$\sum_{i} m_{i}^{2} = \sum_{i} (\sum_{x \in S} [h(x) = i])^{2}$$

= $\sum_{i} (\sum_{x} [h(x) = i]^{2} + 2 \sum_{x < y} [h(x) = i] [h(y) = i])$
= $\sum_{x} (\sum_{i} [h(x) = i]) + 2 \sum_{x < y} \sum_{i} [h(x) = i] [h(y) = i]$
= $\sum_{x} (1) + 2 \sum_{x < y} [h(x) = h(y)]$

 $\mathsf{E}\left[\sum_{i} m_{i}^{2}\right] = m + 2\sum_{x < y} \mathsf{Pr}[h(x) = h(y)] = m + 2\frac{m(m-1)}{2}\frac{1}{m} < 2m$

26 / 32

Rehashing, amortization and...

... making the hash table dynamic

So far we assumed fixed **S** of size $\simeq m$.

Question: What happens as items are inserted and deleted?

- If |S| grows to more than cm for some constant c then hash table performance clearly degrades.
- If |S| stays around ~ m but incurs many insertions and deletions then the initial random hash function is no longer random enough!

Rehashing, amortization and...

... making the hash table dynamic

So far we assumed fixed **S** of size $\simeq m$.

Question: What happens as items are inserted and deleted?

- If |S| grows to more than cm for some constant c then hash table performance clearly degrades.
- If |S| stays around ~ m but incurs many insertions and deletions then the initial random hash function is no longer random enough!
- Solution: Rebuild hash table periodically!
 - Choose a new table size based on current number of elements in the table.
 - 2 Choose a new random hash function and rehash the elements.
 - Oiscard old table and hash function.

Question: When to rebuild? How expensive?

Ruta (UIUC)

Rebuilding the hash table

- Start with table size *m* where *m* is some estimate of |*S*| (can be some large constant).
- If |S| grows to more than twice current table size, build new hash table (choose a new random hash function) with double the current number of elements. Can also use similar trick if table size falls below quarter the size.

Rebuilding the hash table

- Start with table size *m* where *m* is some estimate of |*S*| (can be some large constant).
- If |S| grows to more than twice current table size, build new hash table (choose a new random hash function) with double the current number of elements. Can also use similar trick if table size falls below quarter the size.
- If |S| stays roughly the same but more than c|S| operations on table for some chosen constant c (say 10), rebuild.

Rebuilding the hash table

- Start with table size *m* where *m* is some estimate of |*S*| (can be some large constant).
- If |S| grows to more than twice current table size, build new hash table (choose a new random hash function) with double the current number of elements. Can also use similar trick if table size falls below quarter the size.
- If |S| stays roughly the same but more than c|S| operations on table for some chosen constant c (say 10), rebuild.

The **amortize** cost of rebuilding to previously performed operations. Rebuilding ensures O(1) expected analysis holds even when S changes. Hence O(1) expected look up/insert/delete time *dynamic* data dictionary data structure!

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- 2 To lookup y in dictionary check contents of location h(y)
- Storing items in dictionary expensive in terms of memory, especially if items are unwieldy objects such a long strings, images, etc with *non-uniform* sizes.

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- 2 To lookup y in dictionary check contents of location h(y)
- Storing items in dictionary expensive in terms of memory, especially if items are unwieldy objects such a long strings, images, etc with *non-uniform* sizes.

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- **2** To lookup y if bit in location h(y) is **1** say yes, else no.

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- 2 To lookup y if bit in location h(y) is 1 say yes, else no
- In the second second

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- 2 To lookup y if bit in location h(y) is 1 say yes, else no
- So false negatives but false positives possible due to collisions

Reducing false positives:

• Pick k hash functions h_1, h_2, \ldots, h_k independently

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- 2 To lookup y if bit in location h(y) is 1 say yes, else no
- So false negatives but false positives possible due to collisions

Reducing false positives:

- Pick k hash functions h_1, h_2, \ldots, h_k independently
- **2** To insert set $h_i(x)$ th bit to one in table *i* for each $1 \le i \le k$

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- 2 To lookup y if bit in location h(y) is 1 say yes, else no
- So false negatives but false positives possible due to collisions

Reducing false positives:

- Pick k hash functions h_1, h_2, \ldots, h_k independently
- 2 To insert set $h_i(x)$ th bit to one in table *i* for each $1 \le i \le k$
- To lookup y compute h_i(y) for 1 ≤ i ≤ k and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is α < 1 then with k independent hash function it is α^k.

Take away points

- Hashing is a powerful and important technique for dictionaries. Many practical applications.
- ② Randomization fundamental to understand hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.

Practical Issues

Hashing used typically for integers, vectors, strings etc.

- Universal hashing is defined for integers. To implement for other objects need to map objects in some fashion to integers (via representation)
- Practical methods for various important cases such as vectors, strings are studied extensively. See http://en.wikipedia.org/wiki/Universal_hashing for some pointers.
- Details on Cuckoo hashing and its advantage over chaining http://en.wikipedia.org/wiki/Cuckoo_hashing.
- Relatively recent important paper bridging theory and practice of hashing. "The power of simple tabulation hashing" by Mikkel Thorup and Mihai Patrascu, 2011. See http://en.wikipedia.org/wiki/Tabulation_hashing
- Cryptographic hash functions have a different motivation and
 Ruta (UIUC)
 CS473
 32
 Spring 2018
 32 / 32