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Part I

Hash Tables
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Dictionary Data Structure

1 U : universe of keys with total order: numbers, strings, etc.

2 Data structure to store a subset S ⊆ U
3 Operations:

1 Search/look up: given x ∈ U is x ∈ S?
2 Insert: given x 6∈ S add x to S .
3 Delete: given x ∈ S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.

Can we do everything in O(1) time?

Ruta (UIUC) CS473 4 Spring 2018 4 / 32



Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.
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Handling Collisions: Chaining

Collision: h(x) = h(y) for some x 6= y .

Chaining/Open hashing to handle collisions:
1 For each slot i store all items hashed to slot i in a linked list.
T [i ] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

y

s

f

Does hashing give O(1) time per operation for dictionaries?
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Hash Functions

Parameters: N = |U| (very large), m = |T |, n = |S|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N ≥ m2, then for any hash function h : U → T there exists
i < m such that at least N/m ≥ m elements of U get hashed to
slot i .

Any S containing all of these is a very very bad set for h!
Such a bad set may lead to O(m) lookup time!

Lesson:
Consider a family H of hash functions with good properties and
choose h uniformly at random.

Guarantees: small # collisions in expectation for a given S .

H should allow efficient sampling.
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Universal Hashing

Question: What are good properties of H in distributing data?

1 Uniform: Consider any element x ∈ U . Then if h ∈ H is
picked randomly then x should go into a random slot in T . In
other words Pr[h(x) = i ] = 1/m for every 0 ≤ i < m.

2 Universal: Consider any two distinct elements x, y ∈ U . Then
if h ∈ H is picked randomly then the probability of a collision
between x and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

3 Second property is stronger than the first and the crucial issue.

Definition
A family of hash function H is (2-)universal if for all distinct
x, y ∈ U , Prh∼H[h(x) = h(y)] = 1/m where m is the table size.
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Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

1 O(1) expected time also holds for insertion.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

3 Worst-case: look up time can be large! How large?
Ω(log n/ log log n)
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Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function
ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).

Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.
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Some math required...

Lemma (LemmaUnique)

Let p be a prime number, and Zp = {0, 1, . . . , p − 1}.
x : an integer number in Zp, x 6= 0
=⇒ There exists a unique y ∈ Zp s.t. xy = 1 mod p.

In other words: For every element there is a unique inverse.
=⇒ set Zp = {0, 1, . . . , p − 1} when working modulo p is a

field.
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Proof of LemmaUnique

Claim
Let p be a prime number. For any x, y , z ∈ {1, . . . , p − 1} s.t.
y 6= z , we have that xy mod p 6= xz mod p.

Proof.
Assume for the sake of contradiction xy mod p = xz mod p.
Then

x(y − z) = 0 mod p
=⇒ p divides x(y − z)

=⇒ p divides x OR p divides (y − x) (why?)

=⇒ y − z = 0 =⇒ y = z

And that is a contradiction.
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Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof.
By the above claim if xy = 1 mod p and xz = 1 mod p then
y = z . Hence uniqueness follows.

Existence. For any x ∈ {1, . . . , p − 1} we have that
{x ∗ 1 mod p, x ∗ 2 mod p, . . . , x ∗ (p − 1) mod p} =
{1, 2, . . . , p − 1}.
=⇒ There exists a number y ∈ {1, . . . , p − 1} such that
xy = 1 mod p.
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Proof of the Theorem: Outline

ha,b(x) = ((ax + b) mod p) mod m).

Theorem
H = {ha,b | a, b ∈ Zp, a 6= 0} is universal.

Proof.
Fix x, y ∈ U . Show that Prha,b∼H[ha,b(x) = ha,b(y)] ≤ 1/m.
Note that |H| = p(p − 1).

1 Let (a, b) (equivalently ha,b) be bad for x, y if
ha,b(x) = ha,b(y). At most howmany bad h is ok?

2 Claim: Number of bad (a, b) is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.
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Intuition for the Claim

ga,b(x) = (ax + b) mod p, ha,b(x) = (ga,b(x)) mod m
First map x 6= y to r = ga,b(x) and s = ga,b(y).

LemmaUnique proof =⇒ r 6= s
0 1 2 3 x

(x, y)

y

As (a, b) varies, (r , s) takes all possible p(p − 1) values. Since
(a, b) is picked u.a.r., every value of (r , s) has equal probability.
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Intuition for the Claim

For a fixed a ∈ {0, . . . ,m− 1} what is an upper bound on the size
of set {s ∈ {0, . . . , (p − 1)} | a = s mod m}?

(A) m.

(B) m2.

(C) p.

(D) p/m.

(E) Many. At least two.
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Intuition for the Claim

ga,b(x) = (ax + b) mod p, ha,b(x) = (ga,b(x)) mod m
1 First part of mapping maps

(x, y) to a random location
(ga,b(x), ga,b(y)) in the
“matrix”.

2 (ga,b(x), ga,b(y)) is not on
main diagonal.

3 All blue locations are “bad” –
map by mod m to a
location of collision.

4 But... at most 1/m fraction
of allowable locations in the
matrix are bad.
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We need
to show at most 1/m fraction of bad ha,b

ha,b(x) = (((ax + b) mod p) modm)
2 lemmas ...

Fix x 6= y ∈ Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

1 1-to-1 correspondence between p(p − 1) pairs of (a, b)
(equivalently ha,b) and p(p − 1) pairs of (r , s).

2 Out of all possible p(p − 1) pairs of (r , s), at most
p(p − 1)/m fraction satisfies r mod m = s mod m.
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Some Lemmas

Lemma
If x 6= y then for any a, b ∈ Zp such that a 6= 0, we have

ax + b mod p 6= ay + b mod p.

Proof.
Suppose not

ax + b mod p = ay + b mod p ⇒ a(x − y) mod p = 0

Since p is a prime, p divides either a or (x − y). But a < p and
(x − y) < p, and hence a = 0 or (x − y) = 0. Contradiction!
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Some Lemmas

Lemma
If x 6= y then for each (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 there is exactly one a, b such that

ax + b mod p = r and ay + b mod p = s .

Proof.
Solve the two equations:

ax + b = r mod p and ay + b = s mod p

We get a = r−s
x−y mod p and b = r − ax mod p.

One-to-one correspondence between (a, b) and (r , s)
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Understanding the hashing

Once we fix a and b, and we are given a value x , we compute the
hash value of x in two stages:

1 Compute: r ← (ax + b) mod p.

2 Fold: r ′ ← r mod m

Collision...
Given two distinct values x and y they might collide only because of
folding.

Lemma
# not equal pairs (r , s) of Zp × Zp that are folded to the same
number is p(p − 1)/m.
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Folding numbers

Lemma
# pairs (r , s) ∈ Zp × Zp such that r 6= s and r mod m = s
mod m (folded to the same number) is p(p − 1)/m.

Proof.

Consider a pair (r , s) ∈ {0, 1, . . . , p − 1}2 s.t. r 6= s. Fix r :

1 a = r mod m.

2 There are dp/me values of s that fold into a. That is

r mod m = s mod m.
3 One of them is when r = s.

4 =⇒ # of colliding pairs (dp/me − 1)p ≤ (p − 1)p/m
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Proof of Claim
# of bad pairs is p(p− 1)/m

Proof.
Let a, b ∈ Zp such that a 6= 0 and ha,b(x) = ha,b(y).

1 Let r = ax + b mod p and s = ay + b mod p.

2 Collision if and only if r mod m = s mod m.

3 (Folding error): Number of pairs (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 and r mod m = s mod m is
p(p − 1)/m.

4 From previous lemma there is one-to-one correspondence
between (a, b) and (r , s). Hence total number of bad (a, b)
pairs is p(p − 1)/m.

Prob of x and y to collide: # bad (a, b) pairs

#(a, b) pairs
= p(p−1)/m

p(p−1)
= 1

m .
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Look up Time

Say |S| = |T | = m.
For 0 ≤ i ≤ m − 1, `(i) : list of elements hashed to slot i in T .

Expected look up time

Since for x 6= y , Pr
[
ha,b(x) = ha,b(y)

]
= 1/m, we get

E[|`(i)|] = |S|/m ≤ 1.

Expected worst case look up time

Like in Balls & Bins, E
[
maxm−1

i=0 |`(i)|
]
≥ O(ln n/ ln ln n).

What if |T | = m2 (# Bins is m2)

Claim: If |T | = m2, then E
[
maxm−1

i=0 |`(i)|
]

= O(1).
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Perfect Hashing
Two levels of hash tables

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data
Do hashing once.

If Yi = |`(i)| > 10 then hash elements of `(i) to a table of
size Y 2

i .

Lemma (Look-up)

Expected worst case look up time is O(1).

Lemma (Size)

If |S| = O(m) then space usage of perfect hashing is O(m).
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Intuition: Throwing m Balls in to m2 Bins

Pr[i th ball lands in j th bin]

= 1/m2

For a fixed bin j , Yj =# balls in bin j . E[Yj ] = 1/m.

For c ≥ 3, let δ = cm − 1. Pr[Yj > c]?

Pr[Yj > cm/m] = Pr[Yj > (1 + δ) E[Yj ]]

(Chernoff ) <
(

eδ
(1+δ)(1+δ)

)µ
=

(
e(cm−1)

(cm)cm

)1/m
≤ (e/c)c(1/mc)

≤ 1/m3

Pr
[
maxm2

j=1 Yj > c
]
≤ 1/m (Union bound).

Pr
[
maxm2

j=1 Yj ≤ c
]
≥ 1− 1/m – (w.h.p.)

E[maxj Yj ] ≤ c + 1 = O(1).
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Perfect Hashing
Two levels of hash tables

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data
Do hashing once.

If Yi = |`(i)| > 10 then hash elements of `(i) to a table of
size Y 2

i .

Lemma (Look-up)

Expected worst case look up time is O(1).

Lemma (Size)

If |S| = O(m) then space usage of perfect hashing is O(m).
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Perfect Hashing: Proof of Lemma Size
O(m) space usage

h : the primary hash function. mi = # x in S such that h(x) = i .

Claim

E
[∑m−1

i=0 m2
i

]
< 3m where m = |S|.

Proof.
Let [h(x) = i ] represent indicator variable. mi =

∑
x∈S [h(x) = i ].∑

i m
2
i =

∑
i (
∑

x∈S [h(x) = i ])2

=
∑

i (
∑

x [h(x) = i ]2 + 2
∑

x<y [h(x) = i ][h(y) = i ])
=

∑
x(
∑

i [h(x) = i ]) + 2
∑

x<y
∑

i [h(x) = i ][h(y) = i ]
=

∑
x(1) + 2

∑
x<y [h(x) = h(y)]

E
[∑

i m
2
i
]

= m + 2
∑

x<y Pr[h(x) = h(y)] = m + 2m(m−1)
2

1
m < 2m
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Perfect Hashing: Proof of Lemma Size
O(m) space usage
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Claim
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Rehashing, amortization and...
... making the hash table dynamic

So far we assumed fixed S of size ' m.
Question: What happens as items are inserted and deleted?

1 If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

2 If |S| stays around ' m but incurs many insertions and
deletions then the initial random hash function is no longer
random enough!

Solution: Rebuild hash table periodically!

1 Choose a new table size based on current number of elements in
the table.

2 Choose a new random hash function and rehash the elements.

3 Discard old table and hash function.

Question: When to rebuild? How expensive?
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Rebuilding the hash table

1 Start with table size m where m is some estimate of |S| (can
be some large constant).

2 If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

3 If |S| stays roughly the same but more than c|S| operations on
table for some chosen constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations.
Rebuilding ensures O(1) expected analysis holds even when S
changes. Hence O(1) expected look up/insert/delete time dynamic
data dictionary data structure!
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Bloom Filters

Hashing:

1 To insert x in dictionary store x in table in location h(x)

2 To lookup y in dictionary check contents of location h(y)

3 Storing items in dictionary expensive in terms of memory,
especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no.
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Bloom Filters

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no

3 No false negatives but false positives possible due to collisions

Reducing false positives:

1 Pick k hash functions h1, h2, . . . , hk independently

2 To insert set hi(x)th bit to one in table i for each 1 ≤ i ≤ k
3 To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if

each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .
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Take away points

1 Hashing is a powerful and important technique for dictionaries.
Many practical applications.

2 Randomization fundamental to understand hashing.

3 Good and efficient hashing possible in theory and practice with
proper definitions (universal, perfect, etc).

4 Related ideas of creating a compact fingerprint/sketch for
objects is very powerful in theory and practice.
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Practical Issues

Hashing used typically for integers, vectors, strings etc.

Universal hashing is defined for integers. To implement for other
objects need to map objects in some fashion to integers (via
representation)
Practical methods for various important cases such as vectors,
strings are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for
some pointers.
Details on Cuckoo hashing and its advantage over chaining
http://en.wikipedia.org/wiki/Cuckoo_hashing.
Relatively recent important paper bridging theory and practice of
hashing. “The power of simple tabulation hashing” by Mikkel
Thorup and Mihai Patrascu, 2011. See
http://en.wikipedia.org/wiki/Tabulation_hashing

Cryptographic hash functions have a different motivation and
requirements. Consequently they explore different tradeoffs and
are constructed in a different way. See http:

//en.wikipedia.org/wiki/Cryptographic_hash_function
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