CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

CS 473: Algorithms, Spring 2018

Fingerprinting

Lecture 11 Feb 20, 2018

Most slides are courtesy Prof. Chekuri

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data "for all practical purposes".

- Process of mapping a large data item to a much shorter bit string, called its fingerprint.
- Fingerprints uniquely identifies data "for all practical purposes".
- Typically used to avoid comparison and transmission of bulky data.
- Eg: Web browser can store/fetch file fingerprints to check if it is changed.

- Process of mapping a large data item to a much shorter bit string, called its fingerprint.
- Fingerprints uniquely identifies data "for all practical purposes".
- Typically used to avoid comparison and transmission of bulky data.
- Eg: Web browser can store/fetch file fingerprints to check if it is changed.
- As you may have guessed, fingerprint functions are hash functions.

Bloom Filters

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- **2** To lookup y in dictionary check contents of location h(y)

Hashing:

- To insert x in dictionary store x in table in location h(x)
- **2** To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

- What if elements (x) are unwieldy objects such a long strings, images, etc with *non-uniform* sizes.
- To insert x in dictionary, set bit at location h(x) to 1 (initially all bits are set to 0)
- **3** To lookup y if bit in location h(y) is **1** say yes, else no.

Bloom Filter: tradeoff space for false positives

Reducing false positives:

- Pick k hash functions h_1, h_2, \ldots, h_k independently
- 2 Insert x: for $1 \le i \le k$ set bit in location $h_i(x)$ in table i to 1

Bloom Filter: tradeoff space for false positives

Reducing false positives:

- Pick k hash functions h_1, h_2, \ldots, h_k independently
- 2 Insert x: for $1 \le i \le k$ set bit in location $h_i(x)$ in table i to 1
- Lookup y: compute $h_i(y)$ for $1 \le i \le k$ and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is $\alpha < 1$ then with k independent hash function it is

Bloom Filter: tradeoff space for false positives

Reducing false positives:

- Pick k hash functions h_1, h_2, \ldots, h_k independently
- 2 Insert x: for $1 \le i \le k$ set bit in location $h_i(x)$ in table i to 1
- Lookup y: compute $h_i(y)$ for $1 \le i \le k$ and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is $\alpha < 1$ then with k independent hash function it is α^k .

Outline

Use of hash functions for designing fast algorithms

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Outline

Use of hash functions for designing fast algorithms

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

Outline

Use of hash functions for designing fast algorithms

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

It involves:

- Sampling a prime
- String equality via *mod p* arithmetic
- Rabin's fingerprinting scheme rolling hash
- Karp-Rabin pattern matching algorithm: O(m + n) time.

Part I

Sampling a Prime

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Procedure

- Sample a number p uniformly at random from $\{1, \ldots, x\}$.
- If p is a prime, then output p. Else go to Step (1).

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Procedure

- Sample a number p uniformly at random from $\{1, \ldots, x\}$.
- 2 If p is a prime, then output p. Else go to Step (1).

Checking if p is prime

- Agrawal-Kayal-Saxena primality test: deterministic but slow
- Miller-Rabin randomized primality test: fast but randomized

outputs 'prime' when it is not with very low probability.

Is the returned prime sampled uniformly at random?

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A: a prime is picked in a round. Pr[A] =

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A: a prime is picked in a round. $Pr[A] = \pi(x)/x$.

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A : a prime is picked in a round. $\Pr[A] = \pi(x)/x$. Event B : number (prime) p^* is picked. $\Pr[B] =$

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A : a prime is picked in a round. $\Pr[A] = \pi(x)/x$. Event B : number (prime) p^* is picked. $\Pr[B] = 1/x$.

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A : a prime is picked in a round. $\Pr[A] = \pi(x)/x$. Event B : number (prime) p^* is picked. $\Pr[B] = 1/x$. $\Pr[A \cap B] =$

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A : a prime is picked in a round. $\Pr[A] = \pi(x)/x$. Event B : number (prime) p^* is picked. $\Pr[B] = 1/x$. $\Pr[A \cap B] = \Pr[B] = 1/x$. Why?

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A : a prime is picked in a round. $\Pr[A] = \pi(x)/x$. Event B : number (prime) p^* is picked. $\Pr[B] = 1/x$. $\Pr[A \cap B] = \Pr[B] = 1/x$. Why? Because $B \subset A$.

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A : a prime is picked in a round. $\Pr[A] = \pi(x)/x$. Event B : number (prime) p^* is picked. $\Pr[B] = 1/x$. $\Pr[A \cap B] = \Pr[B] = 1/x$. Why? Because $B \subset A$.

$\Pr[B|A] =$

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \leq x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A : a prime is picked in a round. $\Pr[A] = \pi(x)/x$. Event B : number (prime) p^* is picked. $\Pr[B] = 1/x$. $\Pr[A \cap B] = \Pr[B] = 1/x$. Why? Because $B \subset A$.

$$\Pr[B|A] = \frac{\Pr[A \cap B]}{\Pr[A]} = \frac{\Pr[B]}{\Pr[A]} = \frac{1/x}{\pi(x)/x} = \frac{1}{\pi(x)}$$

Sampling a prime: Expected number of samples

Procedure

- Sample a number p uniformly at random from $\{1, \ldots, x\}$.
- **2** If p is a prime, then output p. Else go to Step (1).

Running time in expectation

Q: How many samples in expectation before termination? **A:** $x/\pi(x)$. Exercise.

 $\pi(x)$: Number of primes between 0 and x.J. Hadamard and C. J. de la Vallée-Poussin (1896)Prime Number Theorem: $\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$

 $\pi(x)$: Number of primes between 0 and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$

Chebyshev (from 1848)

$$\pi(x) \ge \frac{7}{8} \frac{x}{\ln x} = (1.262..) \frac{x}{\lg x} > \frac{x}{\lg x}$$

 $\pi(x)$: Number of primes between 0 and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$

Chebyshev (from 1848)

$$\pi(x) \ge \frac{7}{8} \frac{x}{\ln x} = (1.262..) \frac{x}{\lg x} > \frac{x}{\lg x}$$

• $y \sim \{1, \ldots, x\}$ u.a.r., then y is a prime w.p. $\frac{\pi(x)}{x} > \frac{1}{\lg x}$.

 $\pi(x)$: Number of primes between **0** and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$

Chebyshev (from 1848)

$$\pi(x) \ge \frac{7}{8} \frac{x}{\ln x} = (1.262..) \frac{x}{\lg x} > \frac{x}{\lg x}$$

• $y \sim \{1, \ldots, x\}$ u.a.r., then y is a prime w.p. $\frac{\pi(x)}{x} > \frac{1}{\lg x}$.

• If we want $k \ge 4$ primes then $x \ge 2k \lg k$ suffices.

$$\pi(x) \ge \pi(2k \lg k) = \frac{2k \lg k}{\lg 2 + \lg k + \lg \lg k} \ge \frac{k(2 \lg k)}{2 \lg k} = k$$

Part II

String Equality

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?
String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then O(Ig N) may suffice!!!

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then O(Ig N) may suffice!!!
 - If x = y, then **Pr**[Bob says equal] = 1.
 - If $x \neq y$, then **Pr**[Bob says *un-equal*] = 0.9999.

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then O(Ig N) may suffice!!!
 - If x = y, then $\Pr[Bob \text{ says } equal] = 1$.
 - If $x \neq y$, then **Pr**[Bob says *un-equal*] = 0.9999.

HOW?

Dute 1	(11		0
Ruta	U	ιU	C

x, y : N-bit strings.

x, y : N-bit strings.

(Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

x, y : N-bit strings.

(Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

• Alice picks a random prime p from $\{1, \ldots M\}$.

x, y : N-bit strings.

(Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

- Alice picks a random prime p from $\{1, \ldots, M\}$.
- She sends Bob prime p, and also $h_p(x) = x \mod p$.
- Solution Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

x, y : N-bit strings.

(Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

- Alice picks a random prime p from $\{1, \ldots, M\}$.
- She sends Bob prime p, and also $h_p(x) = x \mod p$.
- Solution Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

Lemma

If x = y then Bob always says equal.

x, y : N-bit strings.

(Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

- Alice picks a random prime p from $\{1, \ldots, M\}$.
- She sends Bob prime p, and also $h_p(x) = x \mod p$.
- Solution Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] \leq 1/5$ (error probability).

x, y : N-bit strings.

(Recall) If $M = \lceil 2(sN) \lg sN \rceil$, then sN primes in $\{1, \ldots, M\}$.

Procedure

Define
$$h_p(x) = x \mod p$$

- Alice picks a random prime p from $\{1, \ldots, M\}$.
- She sends Bob prime p, and also $h_p(x) = x \mod p$.
- Solution Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] \leq 1/s$ (error probability).

Question.

Let x = 6 = 2 * 3. If we draw a p u.a.r. from $\{2, 3, 5, 7\}$, then what is the probability that $x \mod p = 0$?

(A) 0.
(B) 1.
(C) 1/4.
(D) 1/2.
(E) none of the above.

Question.

Let x = 6 = 2 * 3. If we draw a p u.a.r. from $\{2, 3, 5, 7\}$, then what is the probability that $x \mod p = 0$?

(A) 0.
(B) 1.
(C) 1/4.
(D) 1/2.
(E) none of the above.

```
Now, let y = 21. What is the probability that (y - x) \mod p
= 15 mod p = 0?
(A) 0.
(B) 1.
(C) 1/4.
(D) 1/2.
```

x, y N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

x, y N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$. • D = |x - y|, then $D \mod p = 0$, and $D \leq 2^N$.

x, y N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization.

x, y N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.

x, y N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

• D = |x - y|, then $D \mod p = 0$, and $D \le 2^N$.

• $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.

• $2^k \leq D \leq 2^N \Rightarrow k \leq N$. D has at most N divisors.

x, y N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \leq D \leq 2^N \Rightarrow k \leq N$. D has at most N divisors.
- Probability that a random prime p from $\{1, \ldots, M\}$ is a divisor $= \frac{k}{\pi(M)} \leq \frac{N}{\pi(M)}$

x, y N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \leq D \leq 2^N \Rightarrow k \leq N$. D has at most N divisors.
- Probability that a random prime p from $\{1, \ldots, M\}$ is a divisor = $\frac{k}{\pi(M)} \leq \frac{N}{\pi(M)} \leq \frac{N}{M/\lg M} = \frac{N}{2(sN)\lg sN} \lg M \leq \frac{1}{s}$

Low Error Probability

• Choose large enough s. Error prob: 1/s.

Low Error Probability

- Choose large enough s. Error prob: 1/s.
- Alice repeats the process *R* times, and Bob says *equal* only if he gets equal all *R* times.

Low Error Probability

- Choose large enough s. Error prob: 1/s.
- Alice repeats the process *R* times, and Bob says *equal* only if he gets equal all *R* times.
 Error probability: ¹/_{cR}.

Low Error Probability

- Choose large enough s. Error prob: 1/s.
- Alice repeats the process *R* times, and Bob says *equal* only if he gets equal all *R* times.
 Error probability: ¹/_{sR}. For s = 5, R = 10, ¹/₅₁₀ ≤ 0.000001.

Low Error Probability

- Choose large enough s. Error prob: 1/s.
- Alice repeats the process *R* times, and Bob says *equal* only if he gets equal all *R* times.
 Error probability: ¹/_{sR}. For s = 5, R = 10, ¹/₅₁₀ ≤ 0.000001.

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers $\leq M$. # bits: $2 \lg M \leq 4(\lg s + \lg N)$.

Low Error Probability

- Choose large enough s. Error prob: 1/s.
- Alice repeats the process *R* times, and Bob says *equal* only if he gets equal all *R* times.
 Error probability: ¹/_{sR}. For s = 5, R = 10, ¹/₅₁₀ ≤ 0.000001.

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers $\leq M$. # bits: $2 \lg M \leq 4(\lg s + \lg N)$.

If x and y are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits.

Low Error Probability

- Choose large enough s. Error prob: 1/s.
- Alice repeats the process *R* times, and Bob says *equal* only if he gets equal all *R* times.
 Error probability: ¹/_{sR}. For s = 5, R = 10, ¹/₅₁₀ ≤ 0.000001.

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers $\leq M$. # bits: $2 \lg M \leq 4(\lg s + \lg N)$.

If x and y are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits.

Second approach will send $10(2 \lg (10 N \lg 5 N)) \le 1280$ bits.

Part III

Karp-Rabin Pattern Matching Algorithm

Given a string T of length m and pattern P of length n, s.t. $m \gg n$, find all occurrences of P in T.

Example

```
T=abracadabra, P=ab.
```

Given a string T of length m and pattern P of length n, s.t. $m \gg n$, find all occurrences of P in T.

Example

```
T=abracadabra, P=ab.
```

```
Solution S = \{1, 8\}.
```

Given a string T of length m and pattern P of length n, s.t. $m \gg n$, find all occurrences of P in T.

Example

T=abracadabra, **P**=ab.

Solution $S = \{1, 8\}$.

For j > i, let $T_{i...j} = T[i]T[i+1]...T[j]$.

Given a string T of length m and pattern P of length n, s.t. $m \gg n$, find all occurrences of P in T.

Example

T=abracadabra, **P**=ab.

Solution $S = \{1, 8\}$.

For j > i, let $T_{i...j} = T[i]T[i+1]...T[j]$.

Brute force algorithm

 $S = \emptyset$. For each $i = 1 \dots m - n + 1$

• If $T_{i...i+n-1} = P$ then $S = S \cup \{i\}$.

Given a string T of length m and pattern P of length n, s.t. $m \gg n$, find all occurrences of P in T.

Example

T=abracadabra, **P**=ab.

Solution $S = \{1, 8\}$.

For j > i, let $T_{i...j} = T[i]T[i+1]...T[j]$.

Brute force algorithm

 $S = \emptyset$. For each $i = 1 \dots m - n + 1$

• If $T_{i...i+n-1} = P$ then $S = S \cup \{i\}$.

O(mn) run-time.

Using Hash Function

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using hash function

 $S = \emptyset$. For each $i = 1 \dots m - n + 1$

• If $h_p(T_{i...i+n-1}) = h_p(P)$ then $S = S \cup \{i\}$.

Using Hash Function

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using hash function

 $S = \emptyset$. For each $i = 1 \dots m - n + 1$

• If $h_p(T_{i...i+n-1}) = h_p(P)$ then $S = S \cup \{i\}$.

If x is of length n, then computing $h_p(x)$ takes O(n) running time.

Overall O(mn) running time.

Using Hash Function

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using hash function

 $S = \emptyset$. For each $i = 1 \dots m - n + 1$

• If $h_p(T_{i...i+n-1}) = h_p(P)$ then $S = S \cup \{i\}$.

If x is of length n, then computing $h_p(x)$ takes O(n) running time.

Overall O(mn) running time.

Can we compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ fast?

Let a and b be (non-negative) integers.

 $(a+b) \mod p = ((a \mod p) + (b \mod p)) \mod p$
Let a and b be (non-negative) integers.

 $(a+b) \mod p = ((a \mod p) + (b \mod p)) \mod p$

$(a \cdot b) \mod p = ((a \mod p) \cdot (b \mod p)) \mod p$

$$x = T_{i...i+n-1}$$
 and $x' = T_{i+1...i+n}$.

Example

x = 1011001, and x' = 0110010 (or x' = 0110011).

$$x = T_{i...i+n-1}$$
 and $x' = T_{i+1...i+n}$.

Example

x = 1011001, and x' = 0110010 (or x' = 0110011).

$$x' = 2(x - x_{hb}2^{n-1}) + x'_{lb}$$

$$x = T_{i...i+n-1}$$
 and $x' = T_{i+1...i+n}$.

Example

x = 1011001, and x' = 0110010 (or x' = 0110011).

$$\begin{array}{rcl} x' &=& 2(x - x_{hb}2^{n-1}) + x'_{lb} \\ &=& 2x - x_{hb}2^n + x'_{lb} \end{array}$$

$$x = T_{i...i+n-1}$$
 and $x' = T_{i+1...i+n}$.

Example

x = 1011001, and x' = 0110010 (or x' = 0110011).

$$\begin{array}{rcl} x' &=& 2(x - x_{hb}2^{n-1}) + x'_{lb} \\ &=& 2x - x_{hb}2^n + x'_{lb} \end{array}$$

 $\begin{array}{ll} h_p(x') &=& x' \mod p \\ &=& (2(x \mod p) - x_{hb}(2^n \mod p) + x'_{lb}) \mod p \\ &=& (2h_p(x) - x_{hb}h_p(2^n) + x'_{lb}) \mod p \end{array}$

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - **2** For each i = 1, ..., m n + 1
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - For each $i = 1, \ldots, m n + 1$
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - For each $i = 1, \ldots, m n + 1$
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - For each $i = 1, \ldots, m n + 1$
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time.

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - For each $i = 1, \ldots, m n + 1$
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

• For each i = 1, ..., m - n + 1• If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$. • Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Lemma

If match at any position *i* then $i \in S$. In otherwords if $T_{i\dots i+n-1} = P$, then $i \in S$.

All matched positions are in **S**.

Lemma

If match at any position i then $i \in S$. In otherwords if $T_{i...i+n-1} = P$, then $i \in S$.

All matched positions are in **S**.

Can it contain unmatched positions?

a For each
$$i = 1, \ldots, m - n + 1$$
a If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
b Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if $T_{i...i+n-1} = P$, then $i \in S$.

All matched positions are in **S**.

Can it contain unmatched positions? YES!

Lemma

If match at any position i then $i \in S$. In otherwords if $T_{i...i+n-1} = P$, then $i \in S$.

All matched positions are in **S**.

Can it contain unmatched positions? YES! With what probability?

- For each i = 1, ..., m n + 1
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

For each i = 1,..., m - n + 1
If h_p(T_{i...i+n-1}) = h_p(P), then S = S ∪ {i}.
Compute h_p(T_{i+1...i+n}) using h_p(T_{i...i+n-1}) and h_p(2ⁿ).

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

For each $i = 1, \ldots, m - n + 1$ If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

• For each i = 1, ..., m - n + 1• If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$. • Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

False positive: $\Pr[S \text{ contains an } i, \text{ while no match at } i]$ • Given $T_{i,\dots,i+n-1} \neq P$, $\Pr[i \in S] < 1/s$.

• For each i = 1, ..., m - n + 1• If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$. • Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- Given $T_{i\ldots i+n-1} \neq P$, $\Pr[i \in S] \leq 1/s$.
- **Pr**[Any index in *S* is wrong]

For each $i = 1, \ldots, m - n + 1$ If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- Given $T_{i\ldots i+n-1} \neq P$, $\Pr[i \in S] \leq 1/s$.
- **Pr**[Any index in S is wrong] $\leq m/s$ (Union bound).

a For each $i = 1, \ldots, m - n + 1$ **a** If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$. **a** Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- Given $T_{i\dots i+n-1} \neq P$, $\Pr[i \in S] \leq 1/s$.
- **Pr**[Any index in S is wrong] $\leq m/s$ (Union bound).
- To ensure S is correct with at least 0.99 probability, we need

$$1 - \frac{m}{s} = 0.99 \Leftrightarrow \frac{m}{s} = \frac{1}{100} \Leftrightarrow s = 100m$$

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

 $M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

 $M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$

Even if T is entire Wikipedia, with bit length $m \approx 2^{38}$,

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

 $M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$

Even if T is entire Wikipedia, with bit length $m \approx 2^{38}$,

Ig $M \approx 64$ (assuming bit-length of $n \leq 2^{16}$)

Running Time

• In Step 1, computing $h_p(x)$ for an *n* bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

 $M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$

Even if T is entire Wikipedia, with bit length $m \approx 2^{38}$,

Ig $M \approx 64$ (assuming bit-length of $n \leq 2^{16}$)

64-bit arithmetic is doable on laptops!

Ruta (UIUC)

Take away points

- Hashing is a powerful and important technique. Many practical applications.
- 2 Randomization fundamental to understand hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.