
CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

Ruta (UIUC) CS473 1 Spring 2018 1 / 33

CS 473: Algorithms, Spring 2018

Streaming Algorithms
Lecture 12
March 1, 2018

Most slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 2 Spring 2018 2 / 33

Streaming Algorithms

A topic that is both very old, and very current!

Dawn of CS..
Data was stored on tapes, and amount of RAM was very small.

Too much data, too little space.

Store only summary or sketch of data.

Now..
Terabytes of memory, Gigabytes of RAM.

Data streams: Humongous amount of data (sometimes never
ending)!

Can go over it at most once, and sometimes not even that!

Store only summary: sub-linear space-time algorithms.

Ruta (UIUC) CS473 3 Spring 2018 3 / 33

Streaming Algorithms

A topic that is both very old, and very current!

Dawn of CS..
Data was stored on tapes, and amount of RAM was very small.

Too much data, too little space.

Store only summary or sketch of data.

Now..
Terabytes of memory, Gigabytes of RAM.

Data streams: Humongous amount of data (sometimes never
ending)!

Can go over it at most once, and sometimes not even that!

Store only summary: sub-linear space-time algorithms.

Ruta (UIUC) CS473 3 Spring 2018 3 / 33

Examples

An internet router sees a stream of packets, and may want to know,

which connection is using the most packets

how many different connections

median of the file sizes transferred since mid-night

which connections are using more than 0.1% of the bandwidth.

Computing aggregative information about data streams.

Ruta (UIUC) CS473 4 Spring 2018 4 / 33

Outline

Computation with data streams.

Heavy-hitters

Majority element (by R. Boyer and J.S. Moore)

ε-heavy hitters – deterministic

Approximate counting

Counting using hashing – Count-min Sketch
(Cormode-Muthukrishnan’05)

Variant of Bloom filters.

Ruta (UIUC) CS473 5 Spring 2018 5 / 33

Data Streams

A stream of data elements, S = a1, a2,

Say at arrive at time t. Let us assume that at ’s are numbers for this
lecture.

Denote a[1..t] = 〈a1, a2, . . . , at〉.

Given some function we want to compute it continually, while using
limited space.

at any time t we should be able to query the function value on
the stream seen so far, i.e., a[1..t].

Ruta (UIUC) CS473 6 Spring 2018 6 / 33

Data Streams

A stream of data elements, S = a1, a2,

Say at arrive at time t. Let us assume that at ’s are numbers for this
lecture.

Denote a[1..t] = 〈a1, a2, . . . , at〉.

Given some function we want to compute it continually, while using
limited space.

at any time t we should be able to query the function value on
the stream seen so far, i.e., a[1..t].

Ruta (UIUC) CS473 6 Spring 2018 6 / 33

Examples

S = 3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, ...

Computing Sum

F (a[1..t]) =
∑t

i=1 ai

Outputs are: 3, 4, 21, 25, 16, 48, 149, 152, -570, ...

Keep a counter, and keep adding to it.

After T rounds, the number can be at most T2b. O(b + log T)
space.

Ruta (UIUC) CS473 7 Spring 2018 7 / 33

Examples

S = 3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, ...

Computing Sum

F (a[1..t]) =
∑t

i=1 ai

Outputs are: 3, 4, 21, 25, 16, 48, 149, 152, -570, ...

Keep a counter, and keep adding to it.

After T rounds, the number can be at most T2b. O(b + log T)
space.

Ruta (UIUC) CS473 7 Spring 2018 7 / 33

Examples

S = 3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, ...

Computing max

F (a[1..t]) = maxt
i=1 ai

Outputs are: 3, 3, 17, 17, 17, 32, 101, 101, ...

Just need to store b bits.

Median? A lot more tricky

distinct elements? also tricky!

Ruta (UIUC) CS473 8 Spring 2018 8 / 33

Examples

S = 3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, ...

Computing max

F (a[1..t]) = maxt
i=1 ai

Outputs are: 3, 3, 17, 17, 17, 32, 101, 101, ...

Just need to store b bits.

Median?

A lot more tricky

distinct elements? also tricky!

Ruta (UIUC) CS473 8 Spring 2018 8 / 33

Examples

S = 3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, ...

Computing max

F (a[1..t]) = maxt
i=1 ai

Outputs are: 3, 3, 17, 17, 17, 32, 101, 101, ...

Just need to store b bits.

Median? A lot more tricky

distinct elements? also tricky!

Ruta (UIUC) CS473 8 Spring 2018 8 / 33

Examples

S = 3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, ...

Computing max

F (a[1..t]) = maxt
i=1 ai

Outputs are: 3, 3, 17, 17, 17, 32, 101, 101, ...

Just need to store b bits.

Median? A lot more tricky

distinct elements?

also tricky!

Ruta (UIUC) CS473 8 Spring 2018 8 / 33

Examples

S = 3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, ...

Computing max

F (a[1..t]) = maxt
i=1 ai

Outputs are: 3, 3, 17, 17, 17, 32, 101, 101, ...

Just need to store b bits.

Median? A lot more tricky

distinct elements? also tricky!

Ruta (UIUC) CS473 8 Spring 2018 8 / 33

Streaming Algorithms: Framework

〈Initialize summary information〉

While stream S is not done
x ← next element in S
〈Do something with x and update summary information〉
〈Output something if needed〉

Return 〈summary〉

Despite of restrictions, we can compute interesting functions
if we can tolerate some error.

Ruta (UIUC) CS473 9 Spring 2018 9 / 33

Streaming Algorithms: Framework

〈Initialize summary information〉

While stream S is not done
x ← next element in S
〈Do something with x and update summary information〉
〈Output something if needed〉

Return 〈summary〉

Despite of restrictions, we can compute interesting functions
if we can tolerate some error.

Ruta (UIUC) CS473 9 Spring 2018 9 / 33

Streaming Algorithms: One-sided Error

No false negative

Anything that needs to be considered/counted should be counted.

There may be false positive

We may over count. That is we may consider/count something that
shouldn’t have been counted.

Ruta (UIUC) CS473 10 Spring 2018 10 / 33

Part I

Heavy Hitters

Ruta (UIUC) CS473 11 Spring 2018 11 / 33

Finding the Majority Element

Find the element that occur strictly more than half the time, if any.

Note that at most one such element!

E ,D,B,D,D5,D,B,B,B,B,B11,E ,E ,E ,E ,E16

At time 5, it is D.

At time 11, it is B
At time 16, none!

Ruta (UIUC) CS473 12 Spring 2018 12 / 33

Finding the Majority Element

Find the element that occur strictly more than half the time, if any.

Note that at most one such element!

E ,D,B,D,D5,D,B,B,B,B,B11,E ,E ,E ,E ,E16

At time 5, it is D.

At time 11, it is B
At time 16, none!

Ruta (UIUC) CS473 12 Spring 2018 12 / 33

Puzzle
Finding a Majority Element

Treasure hunt
Once upon a time...

there was a treasure hidden in a cave that
different gangs were after. Only one-on-one fight is the unsaid rule
(wild west style). Thus, if two members from different gangs face
each other, then they shoot each other and both die.

Which gang will get the treasure?

Suppose more than half the bandits are part of gang ALGO, then?

Gang ALGO will get the treasure for sure!

Ruta (UIUC) CS473 13 Spring 2018 13 / 33

Puzzle
Finding a Majority Element

Treasure hunt
Once upon a time... there was a treasure hidden in a cave that
different gangs were after. Only one-on-one fight is the unsaid rule
(wild west style). Thus, if two members from different gangs face
each other, then they shoot each other and both die.

Which gang will get the treasure?

Suppose more than half the bandits are part of gang ALGO, then?

Gang ALGO will get the treasure for sure!

Ruta (UIUC) CS473 13 Spring 2018 13 / 33

Puzzle
Finding a Majority Element

Treasure hunt
Once upon a time... there was a treasure hidden in a cave that
different gangs were after. Only one-on-one fight is the unsaid rule
(wild west style). Thus, if two members from different gangs face
each other, then they shoot each other and both die.

Which gang will get the treasure?

Suppose more than half the bandits are part of gang ALGO, then?

Gang ALGO will get the treasure for sure!

Ruta (UIUC) CS473 13 Spring 2018 13 / 33

Puzzle
Finding a Majority Element

Treasure hunt
Once upon a time... there was a treasure hidden in a cave that
different gangs were after. Only one-on-one fight is the unsaid rule
(wild west style). Thus, if two members from different gangs face
each other, then they shoot each other and both die.

Which gang will get the treasure?

Suppose more than half the bandits are part of gang ALGO, then?

Gang ALGO will get the treasure for sure!

Ruta (UIUC) CS473 13 Spring 2018 13 / 33

Finding the Majority Element

Find the element that accrue strictly more than half the time, if any.

R. Boyer and J. S. Moore Algorithm

Initialize: mem=∅ and counter=0

When element at arrives
if (counter == 0)

set mem=at and counter=1
else if (at == mem) then counter++
else counter−− (discard at and a copy of mem)

Return mem.

Even if no majority element, something is returned – False positive.

Ruta (UIUC) CS473 14 Spring 2018 14 / 33

Finding the Majority Element

Find the element that accrue strictly more than half the time, if any.

R. Boyer and J. S. Moore Algorithm

Initialize: mem=∅ and counter=0

When element at arrives
if (counter == 0)

set mem=at and counter=1

else if (at == mem) then counter++
else counter−− (discard at and a copy of mem)

Return mem.

Even if no majority element, something is returned – False positive.

Ruta (UIUC) CS473 14 Spring 2018 14 / 33

Finding the Majority Element

Find the element that accrue strictly more than half the time, if any.

R. Boyer and J. S. Moore Algorithm

Initialize: mem=∅ and counter=0

When element at arrives
if (counter == 0)

set mem=at and counter=1
else if (at == mem) then counter++

else counter−− (discard at and a copy of mem)
Return mem.

Even if no majority element, something is returned – False positive.

Ruta (UIUC) CS473 14 Spring 2018 14 / 33

Finding the Majority Element

Find the element that accrue strictly more than half the time, if any.

R. Boyer and J. S. Moore Algorithm

Initialize: mem=∅ and counter=0

When element at arrives
if (counter == 0)

set mem=at and counter=1
else if (at == mem) then counter++
else counter−− (discard at and a copy of mem)

Return mem.

Even if no majority element, something is returned – False positive.

Ruta (UIUC) CS473 14 Spring 2018 14 / 33

Finding the Majority Element

Find the element that accrue strictly more than half the time, if any.

R. Boyer and J. S. Moore Algorithm

Initialize: mem=∅ and counter=0

When element at arrives
if (counter == 0)

set mem=at and counter=1
else if (at == mem) then counter++
else counter−− (discard at and a copy of mem)

Return mem.

Even if no majority element, something is returned – False positive.

Ruta (UIUC) CS473 14 Spring 2018 14 / 33

Finding the Majority Element: Example

R. Boyer and J. S. Moore Algorithm

Initialize: mem=∅ and counter=0

When element at arrives
if (counter == 0)

set mem=at and counter=1
else if (at == mem) then counter++
else counter−− (discard at and a copy of mem)

Return mem.

E ,D,B,D,D5,D,B,B,B,B,B11,E ,E ,E ,E ,E16

at E D B D D D B B B B B . . .
mem E E B B D D D D B B B . . .
counter 1 0 1 0 1 2 1 0 1 2 3 . . .

Ruta (UIUC) CS473 15 Spring 2018 15 / 33

Finding a Majority Element
Correctness, if majority element

Lemma
If there is a majority element, the algorithm will output it.

Proof.
Decreasing counter is like throwing away a copy of element in
mem.

We do this every time at is different than mem, and there are
less than half such at .

Sometimes mem may not contain the majority element.
However, even if we are throwing away the majority element
every time, since they are more than half all can’t be thrown.

In fact at any time t, mem contains majority element of sub-stream
a[1..t], if any.

Ruta (UIUC) CS473 16 Spring 2018 16 / 33

Finding a Majority Element
Correctness, if majority element

Lemma
If there is a majority element, the algorithm will output it.

Proof.
Decreasing counter is like throwing away a copy of element in
mem.

We do this every time at is different than mem, and there are
less than half such at .

Sometimes mem may not contain the majority element.
However, even if we are throwing away the majority element
every time, since they are more than half all can’t be thrown.

In fact at any time t, mem contains majority element of sub-stream
a[1..t], if any.

Ruta (UIUC) CS473 16 Spring 2018 16 / 33

Finding a Majority Element
Correctness, if majority element

Lemma
If there is a majority element, the algorithm will output it.

Proof.
Decreasing counter is like throwing away a copy of element in
mem.

We do this every time at is different than mem, and there are
less than half such at .

Sometimes mem may not contain the majority element.

However, even if we are throwing away the majority element
every time, since they are more than half all can’t be thrown.

In fact at any time t, mem contains majority element of sub-stream
a[1..t], if any.

Ruta (UIUC) CS473 16 Spring 2018 16 / 33

Finding a Majority Element
Correctness, if majority element

Lemma
If there is a majority element, the algorithm will output it.

Proof.
Decreasing counter is like throwing away a copy of element in
mem.

We do this every time at is different than mem, and there are
less than half such at .

Sometimes mem may not contain the majority element.
However, even if we are throwing away the majority element
every time, since they are more than half all can’t be thrown.

In fact at any time t, mem contains majority element of sub-stream
a[1..t], if any.

Ruta (UIUC) CS473 16 Spring 2018 16 / 33

Finding a Majority Element
Correctness, if majority element

Lemma
If there is a majority element, the algorithm will output it.

Proof.
Decreasing counter is like throwing away a copy of element in
mem.

We do this every time at is different than mem, and there are
less than half such at .

Sometimes mem may not contain the majority element.
However, even if we are throwing away the majority element
every time, since they are more than half all can’t be thrown.

In fact at any time t, mem contains majority element of sub-stream
a[1..t], if any.

Ruta (UIUC) CS473 16 Spring 2018 16 / 33

Part II

Heavy Hitters

Ruta (UIUC) CS473 17 Spring 2018 17 / 33

ε-Heavy Hitters

Definition
Given a stream S = a1, a2, ..., define count of element e at any
time t to be

countt(e) = |{i ≤ t | ai = e}|

e is called ε-heavy hitter at time t if countt(e) > εt.

Goal:
Maintain a structure containing all the ε-heavy hitters so far.
At any point there are at most 1/ε such elements.

Crucial Note: false positive are OK, but no false negative
We are NOT allowed to miss any heavy-hitters, but we could store
non-heavy-hitters.

Ruta (UIUC) CS473 18 Spring 2018 18 / 33

ε-Heavy Hitters

Definition
Given a stream S = a1, a2, ..., define count of element e at any
time t to be

countt(e) = |{i ≤ t | ai = e}|

e is called ε-heavy hitter at time t if countt(e) > εt.

Goal:
Maintain a structure containing all the ε-heavy hitters so far.
At any point there are at most 1/ε such elements.

Crucial Note: false positive are OK, but no false negative
We are NOT allowed to miss any heavy-hitters, but we could store
non-heavy-hitters.

Ruta (UIUC) CS473 18 Spring 2018 18 / 33

ε-Heavy Hitters

Definition
Given a stream S = a1, a2, ..., define count of element e at any
time t to be

countt(e) = |{i ≤ t | ai = e}|

e is called ε-heavy hitter at time t if countt(e) > εt.

Goal:
Maintain a structure containing all the ε-heavy hitters so far.
At any point there are at most 1/ε such elements.

Crucial Note: false positive are OK, but no false negative
We are NOT allowed to miss any heavy-hitters, but we could store
non-heavy-hitters.

Ruta (UIUC) CS473 18 Spring 2018 18 / 33

ε-Heavy Hitters: Example

If ε = 1/2 then the majority element!

E ,D,B,D,D5,D,B,A,B,B,B11,E ,E ,E ,E ,E16

1/3-heavy hitters

At time 5, it is D.

At time 11, both B and D.

At time 15, none!

At time 16, it is E .

As time passes, the set of heavy hitters may change completely.

Ruta (UIUC) CS473 19 Spring 2018 19 / 33

ε-Heavy Hitters: Example

If ε = 1/2 then the majority element!

E ,D,B,D,D5,D,B,A,B,B,B11,E ,E ,E ,E ,E16

1/3-heavy hitters

At time 5, it is D.

At time 11, both B and D.

At time 15,

none!

At time 16, it is E .

As time passes, the set of heavy hitters may change completely.

Ruta (UIUC) CS473 19 Spring 2018 19 / 33

ε-Heavy Hitters: Example

If ε = 1/2 then the majority element!

E ,D,B,D,D5,D,B,A,B,B,B11,E ,E ,E ,E ,E16

1/3-heavy hitters

At time 5, it is D.

At time 11, both B and D.

At time 15, none!

At time 16,

it is E .

As time passes, the set of heavy hitters may change completely.

Ruta (UIUC) CS473 19 Spring 2018 19 / 33

ε-Heavy Hitters: Example

If ε = 1/2 then the majority element!

E ,D,B,D,D5,D,B,A,B,B,B11,E ,E ,E ,E ,E16

1/3-heavy hitters

At time 5, it is D.

At time 11, both B and D.

At time 15, none!

At time 16, it is E .

As time passes, the set of heavy hitters may change completely.

Ruta (UIUC) CS473 19 Spring 2018 19 / 33

ε-Heavy Hitters: Example

If ε = 1/2 then the majority element!

E ,D,B,D,D5,D,B,A,B,B,B11,E ,E ,E ,E ,E16

1/3-heavy hitters

At time 5, it is D.

At time 11, both B and D.

At time 15, none!

At time 16, it is E .

As time passes, the set of heavy hitters may change completely.

Ruta (UIUC) CS473 19 Spring 2018 19 / 33

ε-Heavy Hitters: Algorithm

If ε = 1/2 then the majority element!
Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

Initialize: C [j] = 0 and T [j] = ∅ for all i.

When element at arrives,
If (at == T [j] for some j ≤ k), then C [j] + +.
Else if (C [j] == 0 for some j ≤ k), then

Set T [j]← at and C [j]← 1.
Else do C [j]−− for all j . (discard at and a copy of all T [j])

Same as the Majority algorithm for ε = 1/2.

Ruta (UIUC) CS473 20 Spring 2018 20 / 33

ε-Heavy Hitters: Algorithm

If ε = 1/2 then the majority element!
Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

Initialize: C [j] = 0 and T [j] = ∅ for all i.

When element at arrives,
If (at == T [j] for some j ≤ k), then C [j] + +.

Else if (C [j] == 0 for some j ≤ k), then
Set T [j]← at and C [j]← 1.

Else do C [j]−− for all j . (discard at and a copy of all T [j])

Same as the Majority algorithm for ε = 1/2.

Ruta (UIUC) CS473 20 Spring 2018 20 / 33

ε-Heavy Hitters: Algorithm

If ε = 1/2 then the majority element!
Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

Initialize: C [j] = 0 and T [j] = ∅ for all i.

When element at arrives,
If (at == T [j] for some j ≤ k), then C [j] + +.
Else if (C [j] == 0 for some j ≤ k), then

Set T [j]← at and C [j]← 1.
Else do C [j]−− for all j . (discard at and a copy of all T [j])

Same as the Majority algorithm for ε = 1/2.

Ruta (UIUC) CS473 20 Spring 2018 20 / 33

ε-Heavy Hitters: Algorithm

If ε = 1/2 then the majority element!
Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

Initialize: C [j] = 0 and T [j] = ∅ for all i.

When element at arrives,
If (at == T [j] for some j ≤ k), then C [j] + +.
Else if (C [j] == 0 for some j ≤ k), then

Set T [j]← at and C [j]← 1.

Else do C [j]−− for all j . (discard at and a copy of all T [j])

Same as the Majority algorithm for ε = 1/2.

Ruta (UIUC) CS473 20 Spring 2018 20 / 33

ε-Heavy Hitters: Algorithm

If ε = 1/2 then the majority element!
Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

Initialize: C [j] = 0 and T [j] = ∅ for all i.

When element at arrives,
If (at == T [j] for some j ≤ k), then C [j] + +.
Else if (C [j] == 0 for some j ≤ k), then

Set T [j]← at and C [j]← 1.
Else do C [j]−− for all j . (discard at and a copy of all T [j])

Same as the Majority algorithm for ε = 1/2.

Ruta (UIUC) CS473 20 Spring 2018 20 / 33

ε-Heavy Hitters: Algorithm

If ε = 1/2 then the majority element!
Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

Initialize: C [j] = 0 and T [j] = ∅ for all i.

When element at arrives,
If (at == T [j] for some j ≤ k), then C [j] + +.
Else if (C [j] == 0 for some j ≤ k), then

Set T [j]← at and C [j]← 1.
Else do C [j]−− for all j . (discard at and a copy of all T [j])

Same as the Majority algorithm for ε = 1/2.

Ruta (UIUC) CS473 20 Spring 2018 20 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

For each element, count is maintained up to εt error!

If e is not an ε-heavy hitter then countt(e) ≤ εt, and hence
estt(e) = 0 is correct up to εt error.

Ruta (UIUC) CS473 21 Spring 2018 21 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

For each element, count is maintained up to εt error!

If e is not an ε-heavy hitter then countt(e) ≤ εt, and hence
estt(e) = 0 is correct up to εt error.

Ruta (UIUC) CS473 21 Spring 2018 21 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

For each element, count is maintained up to εt error!

If e is not an ε-heavy hitter then countt(e) ≤ εt, and hence
estt(e) = 0 is correct up to εt error.

Ruta (UIUC) CS473 21 Spring 2018 21 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

Corollary
For any time t, T contains all the ε-heavy hitters in a[1..t].

Proof.
If e is a heavy hitter at time t then countt(e) > εt.

Using the
lemma,

estt(e) ≥ countt(e)− εt > 0

Ruta (UIUC) CS473 22 Spring 2018 22 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

Corollary
For any time t, T contains all the ε-heavy hitters in a[1..t].

Proof.
If e is a heavy hitter at time t then countt(e) > εt.Using the
lemma,

estt(e) ≥ countt(e)− εt

> 0

Ruta (UIUC) CS473 22 Spring 2018 22 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

Corollary
For any time t, T contains all the ε-heavy hitters in a[1..t].

Proof.
If e is a heavy hitter at time t then countt(e) > εt.Using the
lemma,

estt(e) ≥ countt(e)− εt > 0

Ruta (UIUC) CS473 22 Spring 2018 22 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

Proof.
Counter for e increases only when we see e, ∴ estt(e) ≤ countt(e).

We want countt(e)− estt(e) ≤ εt. It increases by one,

when we decrease all k counters, and see an element outside T
this is like discarding k + 1 elements.

up to time t, we have only t elements to discard

So at most t/(k + 1) < tε such increases.

Ruta (UIUC) CS473 23 Spring 2018 23 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

Proof.
Counter for e increases only when we see e, ∴ estt(e) ≤ countt(e).
We want countt(e)− estt(e) ≤ εt. It increases by one,

when we decrease all k counters, and see an element outside T

this is like discarding k + 1 elements.

up to time t, we have only t elements to discard

So at most t/(k + 1) < tε such increases.

Ruta (UIUC) CS473 23 Spring 2018 23 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

Proof.
Counter for e increases only when we see e, ∴ estt(e) ≤ countt(e).
We want countt(e)− estt(e) ≤ εt. It increases by one,

when we decrease all k counters, and see an element outside T
this is like discarding k + 1 elements.

up to time t, we have only t elements to discard

So at most t/(k + 1) < tε such increases.

Ruta (UIUC) CS473 23 Spring 2018 23 / 33

ε-Heavy Hitters
Algorithm Analysis

At any time t, our estimates are:

estt(e) = C [j] if e = T [j]
= 0 otherwise

Lemma
Estimates satisfy: estt(e) ≤ countt(e) ≤ estt(e) + εt

Proof.
Counter for e increases only when we see e, ∴ estt(e) ≤ countt(e).
We want countt(e)− estt(e) ≤ εt. It increases by one,

when we decrease all k counters, and see an element outside T
this is like discarding k + 1 elements.

up to time t, we have only t elements to discard

So at most t/(k + 1) < tε such increases.

Ruta (UIUC) CS473 23 Spring 2018 23 / 33

ε-Heavy Hitters: Algorithm
Space usage

Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

...

Maintains O(1/ε) counters and elements.

O(log t) for each counter. O(Σ) for each element, where Σ is the
description of largest element.

Total: O(1/ε(log t + Σ)).
Recall: maintains counts for all elements up to εt error.

Ruta (UIUC) CS473 24 Spring 2018 24 / 33

ε-Heavy Hitters: Algorithm
Space usage

Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

...

Maintains O(1/ε) counters and elements.
O(log t) for each counter. O(Σ) for each element, where Σ is the
description of largest element.

Total: O(1/ε(log t + Σ)).
Recall: maintains counts for all elements up to εt error.

Ruta (UIUC) CS473 24 Spring 2018 24 / 33

ε-Heavy Hitters: Algorithm
Space usage

Set k = d1/εe − 1. (if ε = 1/2 then k = 1)

Algorithm

Keep an array T [1, . . . , k] to hold elements
Keep an array C [1, . . . , k] to hold their counters

...

Maintains O(1/ε) counters and elements.
O(log t) for each counter. O(Σ) for each element, where Σ is the
description of largest element.

Total: O(1/ε(log t + Σ)).
Recall: maintains counts for all elements up to εt error.

Ruta (UIUC) CS473 24 Spring 2018 24 / 33

Part III

Use of Hash Functions

Ruta (UIUC) CS473 25 Spring 2018 25 / 33

Maintaining Counts

Problem Statement:
At any time t, estimate the number of times every element appeared
so far.

If error up to εt is OK, then we can use ε-heavy hitter algorithm.

It takes O(1/ε(log t + Σ)) space.

Can we do better?

Yes – Bloom filter like idea

Ruta (UIUC) CS473 26 Spring 2018 26 / 33

Maintaining Counts

Problem Statement:
At any time t, estimate the number of times every element appeared
so far.

If error up to εt is OK, then we can use ε-heavy hitter algorithm.

It takes O(1/ε(log t + Σ)) space.

Can we do better?

Yes – Bloom filter like idea

Ruta (UIUC) CS473 26 Spring 2018 26 / 33

Maintaining Counts

Problem Statement:
At any time t, estimate the number of times every element appeared
so far.

If error up to εt is OK, then we can use ε-heavy hitter algorithm.

It takes O(1/ε(log t + Σ)) space.

Can we do better?

Yes – Bloom filter like idea

Ruta (UIUC) CS473 26 Spring 2018 26 / 33

Maintaining Counts

Problem Statement:
At any time t, estimate the number of times every element appeared
so far.

If error up to εt is OK, then we can use ε-heavy hitter algorithm.

It takes O(1/ε(log t + Σ)) space.

Can we do better?

Yes – Bloom filter like idea

Ruta (UIUC) CS473 26 Spring 2018 26 / 33

Recall: Bloom Filter

Storage for inserts and lookups

Sample hash functions h1, . . . , hd independently and uniformly at
random from some family H.

Insert(e)
For i = 1...d
Set Ti [hi(e)]← 1

Lookup(e)
For i = 1...d
If (Ti [hi (e)] == 0) then return “No”

Return “Yes”

If e inserted, then Lookup(e) will always return “Yes”.

e not inserted, but still it can return “Yes” with very low probability.

Due to some e′s being inserted with hi(e′) = hi(e).

If Prhi∼H[e not inserted and Ti [hi(e)] = 1] ≤ α, then
combined error probability would be at most αd .

Ruta (UIUC) CS473 27 Spring 2018 27 / 33

Recall: Bloom Filter

Storage for inserts and lookups

Sample hash functions h1, . . . , hd independently and uniformly at
random from some family H.

Insert(e)
For i = 1...d
Set Ti [hi(e)]← 1

Lookup(e)
For i = 1...d
If (Ti [hi (e)] == 0) then return “No”

Return “Yes”

If e inserted, then Lookup(e) will always return “Yes”.

e not inserted, but still it can return “Yes” with very low probability.

Due to some e′s being inserted with hi(e′) = hi(e).

If Prhi∼H[e not inserted and Ti [hi(e)] = 1] ≤ α, then
combined error probability would be at most αd .

Ruta (UIUC) CS473 27 Spring 2018 27 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

Keep d arrays C1, ...,Cd , each to hold m counters.

H: 2-universal family of hash functions mapping U to
{0, . . . ,m − 1}. Sample h1, . . . , hd independently and uniformly
at random from H.

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

As element at arrives at time t, call CMInsert(at).

To get count of e at any time t, call CMEstimate(e).

Ruta (UIUC) CS473 28 Spring 2018 28 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

Keep d arrays C1, ...,Cd , each to hold m counters.

H: 2-universal family of hash functions mapping U to
{0, . . . ,m − 1}. Sample h1, . . . , hd independently and uniformly
at random from H.

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

As element at arrives at time t, call CMInsert(at).

To get count of e at any time t, call CMEstimate(e).

Ruta (UIUC) CS473 28 Spring 2018 28 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

Keep d arrays C1, ...,Cd , each to hold m counters.

H: 2-universal family of hash functions mapping U to
{0, . . . ,m − 1}. Sample h1, . . . , hd independently and uniformly
at random from H.

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

As element at arrives at time t, call CMInsert(at).

To get count of e at any time t, call CMEstimate(e).

Ruta (UIUC) CS473 28 Spring 2018 28 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

Keep d arrays C1, ...,Cd , each to hold m counters.

H: 2-universal family of hash functions mapping U to
{0, . . . ,m − 1}. Sample h1, . . . , hd independently and uniformly
at random from H.

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

As element at arrives at time t, call CMInsert(at).

To get count of e at any time t, call CMEstimate(e).

Ruta (UIUC) CS473 28 Spring 2018 28 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

Keep d arrays C1, ...,Cd , each to hold m counters.

H: 2-universal family of hash functions mapping U to
{0, . . . ,m − 1}. Sample h1, . . . , hd independently and uniformly
at random from H.

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

As element at arrives at time t, call CMInsert(at).

To get count of e at any time t, call CMEstimate(e).

Ruta (UIUC) CS473 28 Spring 2018 28 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

At time t, let estt(e) = CMEstimate(e) = mind
i=1 Ci [hi(e)].

Observation: estt(e) ≥ countt(e).

Question: How big (estt(e)− countt(e)) can be?

Recall: Any e, y ∈ U , if e 6= y then Pr[hi(y) = hi(e)] = 1
m ∀i .

Ruta (UIUC) CS473 29 Spring 2018 29 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

At time t, let estt(e) = CMEstimate(e) = mind
i=1 Ci [hi(e)].

Observation: estt(e) ≥ countt(e).

Question: How big (estt(e)− countt(e)) can be?

Recall: Any e, y ∈ U , if e 6= y then Pr[hi(y) = hi(e)] = 1
m ∀i .

Ruta (UIUC) CS473 29 Spring 2018 29 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

At time t, let estt(e) = CMEstimate(e) = mind
i=1 Ci [hi(e)].

Observation: estt(e) ≥ countt(e).

Question: How big (estt(e)− countt(e)) can be?

Recall: Any e, y ∈ U , if e 6= y then Pr[hi(y) = hi(e)] = 1
m ∀i .

Ruta (UIUC) CS473 29 Spring 2018 29 / 33

Count Min-Sketch
By G. Cormode and S. M. Muthukrishnan’05

CMInsert(e)
For i = 1...d
Do Ci [hi(e)] + +

CMEstimate(e)
est ←∞
For i = 1...d
est ← min{est,Ci [hi(e)]}

Return est

At time t, let estt(e) = CMEstimate(e) = mind
i=1 Ci [hi(e)].

Observation: estt(e) ≥ countt(e).

Question: How big (estt(e)− countt(e)) can be?

Recall: Any e, y ∈ U , if e 6= y then Pr[hi(y) = hi(e)] = 1
m ∀i .

Ruta (UIUC) CS473 29 Spring 2018 29 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Let f ′e = estt(e) and fe = countt(e). We want to bound (f ′e − fe).

Observations:

Define indicator variable Xi ,e,y = [hi(y) = hi(e)].

E[Xi ,e,y] = Pr[hi(y) = hi(e)] = 1/m

Let Xi ,e :=
∑

y 6=e Xi ,e,y fy be the total over counting at Ci [hi(e)].

Ci [hi(e)] = Xi ,e + fe

and since at most t elements have arrived so far,

E[Xi ,e] =
∑
y 6=e

E[Xi ,e,y] fy =
1

m

∑
y 6=e

fy ≤
t
m

Ruta (UIUC) CS473 30 Spring 2018 30 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Let f ′e = estt(e) and fe = countt(e). We want to bound (f ′e − fe).

Observations:
Define indicator variable Xi ,e,y = [hi(y) = hi(e)].

E[Xi ,e,y] = Pr[hi(y) = hi(e)] = 1/m

Let Xi ,e :=
∑

y 6=e Xi ,e,y fy be the total over counting at Ci [hi(e)].

Ci [hi(e)] = Xi ,e + fe

and since at most t elements have arrived so far,

E[Xi ,e] =
∑
y 6=e

E[Xi ,e,y] fy =
1

m

∑
y 6=e

fy ≤
t
m

Ruta (UIUC) CS473 30 Spring 2018 30 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Let f ′e = estt(e) and fe = countt(e). We want to bound (f ′e − fe).

Observations:
Define indicator variable Xi ,e,y = [hi(y) = hi(e)].

E[Xi ,e,y] = Pr[hi(y) = hi(e)] = 1/m

Let Xi ,e :=
∑

y 6=e Xi ,e,y fy be the total over counting at Ci [hi(e)].

Ci [hi(e)] = Xi ,e + fe

and since at most t elements have arrived so far,

E[Xi ,e] =
∑
y 6=e

E[Xi ,e,y] fy =
1

m

∑
y 6=e

fy ≤
t
m

Ruta (UIUC) CS473 30 Spring 2018 30 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Let f ′e = estt(e) and fe = countt(e). We want to bound (f ′e − fe).

Observations:
Define indicator variable Xi ,e,y = [hi(y) = hi(e)].

E[Xi ,e,y] = Pr[hi(y) = hi(e)] = 1/m

Let Xi ,e :=
∑

y 6=e Xi ,e,y fy be the total over counting at Ci [hi(e)].

Ci [hi(e)] = Xi ,e + fe

and since at most t elements have arrived so far,

E[Xi ,e] =
∑
y 6=e

E[Xi ,e,y] fy =
1

m

∑
y 6=e

fy ≤

t
m

Ruta (UIUC) CS473 30 Spring 2018 30 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Let f ′e = estt(e) and fe = countt(e). We want to bound (f ′e − fe).

Observations:
Define indicator variable Xi ,e,y = [hi(y) = hi(e)].

E[Xi ,e,y] = Pr[hi(y) = hi(e)] = 1/m

Let Xi ,e :=
∑

y 6=e Xi ,e,y fy be the total over counting at Ci [hi(e)].

Ci [hi(e)] = Xi ,e + fe

and since at most t elements have arrived so far,

E[Xi ,e] =
∑
y 6=e

E[Xi ,e,y] fy =
1

m

∑
y 6=e

fy ≤
t
m

Ruta (UIUC) CS473 30 Spring 2018 30 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
=

Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]

= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]

= Πd
i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

We have Ci [hi(e)] = Xi ,e + fe and E[Xi ,e] ≤ t
m .

Then, for ε > 0

Pr[Ci [hi(e)]− fe ≥ εt] = Pr[Xi ,e ≥ εt] [definition]

≤ E[Xi ,e]
εt [Markov’s inequality]

≤ t/m
εt = 1

mε [derived above]

Recall: f ′e = estt(e) = mind
i=1 Ci [hi(e)].

Pr
[
f ′e − fe ≥ εt

]
= Pr[Ci [hi(e)]− fe ≥ εt for all i]
= Pr[Xi ,e ≥ εt for all i]
= Πd

i=1 Pr[Xi ,e ≥ εt] [independence of hi ’s]

≤
(

1
εm

)d
[derived above]

Ruta (UIUC) CS473 31 Spring 2018 31 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Pr[estt(e)− countt(e) ≥ εt] ≤
(

1

εm

)d

≤ δ

Set m = d2/εe and d = dlg 1/δe.

Space: m ∗ d counters each of size lg(t) = O(1
ε

lg 1
δ

lg t) bits.

Ruta (UIUC) CS473 32 Spring 2018 32 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Pr[estt(e)− countt(e) ≥ εt] ≤
(

1

εm

)d

≤ δ

Set m = d2/εe and d = dlg 1/δe.

Space: m ∗ d counters each of size lg(t) = O(1
ε

lg 1
δ

lg t) bits.

Ruta (UIUC) CS473 32 Spring 2018 32 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Pr[estt(e)− countt(e) ≥ εt] ≤
(

1

εm

)d

≤ δ

Set m = d2/εe and d = dlg 1/δe.

Space: m ∗ d counters each of size lg(t) = O(1
ε

lg 1
δ

lg t) bits.

Ruta (UIUC) CS473 32 Spring 2018 32 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Pr[estt(e)− countt(e) ≥ εt] ≤
(

1

εm

)d

≤ δ

Set m = d2/εe and d = dlg 1/δe.

Space:

m ∗ d counters each of size lg(t) = O(1
ε

lg 1
δ

lg t) bits.

Ruta (UIUC) CS473 32 Spring 2018 32 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Pr[estt(e)− countt(e) ≥ εt] ≤
(

1

εm

)d

≤ δ

Set m = d2/εe and d = dlg 1/δe.

Space: m ∗ d counters each of size lg(t) = O(1
ε

lg 1
δ

lg t) bits.

Ruta (UIUC) CS473 32 Spring 2018 32 / 33

Count Min-Sketch: Analysis
By G. Cormode and S. M. Muthukrishnan’05

Lemma
Given ε, δ > 0, we can estimate countt(e), at any time t for any
element e, up to εt error with probability at least (1− δ) using
O(1

ε
lg 1

δ
) many counters.

Ruta (UIUC) CS473 33 Spring 2018 33 / 33

	Heavy Hitters
	Heavy Hitters
	Use of Hash Functions

