CS 473: Algorithms, Spring 2018

Network Flows and Cuts

Lecture 13 March 6, 2018

Most slides are courtesy Prof. Chekuri

How many edges to cut?

For the graph depicted on the right. How many edges have to be cut before there is no path from s to t?

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

How many edges to cut?

For the graph depicted on the right. How many edges have to be cut before there is no path from s to t?

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Related Q. At most how many edge disjoint paths from s to t?

Part I

Network Flows: Introduction and Setup

Transportation/Road Network

Internet Backbone Network

Common Features of Flow Networks

- Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- Traffic flows from sources to sinks.
- Traffic is *switched/interchanged* at nodes.

Common Features of Flow Networks

- Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- Traffic flows from sources to sinks.
- Straffic is *switched/interchanged* at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that **flows** from sources to sinks.

Single Source/Single Sink Flows

Simple setting:

- Single source *s* and single sink *t*.
- Every other node v is an **internal** node.
- Flow originates at *s* and terminates at *t*.

Single Source/Single Sink Flows

Simple setting:

- Single source *s* and single sink *t*.
- Every other node *v* is an **internal** node.
- Flow originates at *s* and terminates at *t*.

Each edge e has a capacity
 c(e) ≥ 0.

Sometimes assume:
 Source s ∈ V has no incoming edges, and sink t ∈ V has no outgoing edges.

Single Source/Single Sink Flows

Simple setting:

- Single source *s* and single sink *t*.
- Every other node *v* is an **internal** node.
- Flow originates at *s* and terminates at *t*.

Each edge e has a capacity
 c(e) ≥ 0.

Sometimes assume:
 Source s ∈ V has no incoming edges, and sink t ∈ V has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Definition of Flow

Two ways to define flows:

- edge based, or
- 2 path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

Definition

Flow in network G = (V, E), is function $f : E \to \mathbb{R}^{\geq 0}$ s.t.

Definition

Flow in network G = (V, E), is function $f : E \to \mathbb{R}^{\geq 0}$ s.t. (Capacity Constraint: For each edge $e, f(e) \leq c(e)$.

Figure: Flow with value.

14/30

Definition

Flow in network G = (V, E), is function $f : E \to \mathbb{R}^{\geq 0}$ s.t. (a) Capacity Constraint: For each edge $e, f(e) \leq c(e)$. (b) $f(e) \leq c(e)$. (c) $f(e) \leq s, t$. (c) $f(e) = \sum_{e \text{ out of } v} f(e)$ e into v(c) $f(e) = \sum_{e \text{ out of } v} f(e)$

Definition

Flow in network G = (V, E), is function $f : E \to \mathbb{R}^{\geq 0}$ s.t. (a) Capacity Constraint: For each edge $e, f(e) \leq c(e)$. (b) $f(e) \leq c(e)$. (c) $f(e) \leq c(e)$. (c) f(e) = c(e). (c) f(e) = c(e)

Figure: Flow with value.

Value of flow= (total flow out of source) - (total flow in to source).

More Definitions and Notation

Flow in and out of vertex \boldsymbol{v}

$$f^{\rm in}(v) = \sum_{e \text{ into } v} f(e)$$

$$f^{\rm out}(v) = \sum_{e \text{ out of } v} f(e)$$

More Definitions and Notation

Flow in and out of vertex \boldsymbol{v}

$$f^{\rm in}(v) = \sum_{e \text{ into } v} f(e)$$

$$f^{\rm out}(v) = \sum_{e \text{ out of } v} f(e)$$

More Definitions and Notation

Flow in and out of vertex \boldsymbol{v}

$$f^{\rm in}(v) = \sum_{e \text{ into } v} f(e)$$

$$f^{\rm out}(v) = \sum_{e \text{ out of } v} f(e)$$

Definition. For network G with source s, the value of flow f is defined as

$$v(f) = f^{\rm out}(s) - f^{\rm in}(s)$$

Value of flow?

In the flow depicted on the right, the value of the flow is.

(A) 6.
(B) 13.
(C) 18.
(D) 28.
(E) 43.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all *simple* paths from *s* to *t*. $|\mathcal{P}|$ can be **exponential** in *n*.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all *simple* paths from *s* to *t*. $|\mathcal{P}|$ can be **exponential** in *n*.

Definition (Flow by paths.)

A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all *simple* paths from *s* to *t*. $|\mathcal{P}|$ can be **exponential** in *n*.

Definition (Flow by paths.)

A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.

O Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all *simple* paths from *s* to *t*. $|\mathcal{P}|$ can be **exponential** in *n*.

Definition (Flow by paths.)

A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all *simple* paths from *s* to *t*. $|\mathcal{P}|$ can be **exponential** in *n*.

Definition (Flow by paths.)

A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.

p

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{e \in \mathcal{P}: e \in p} f(p) \le c(e)$$

Conservation Constraint:

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all *simple* paths from *s* to *t*. $|\mathcal{P}|$ can be **exponential** in *n*.

Definition (Flow by paths.)

A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

Conservation Constraint: No need! Automatic.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all *simple* paths from *s* to *t*. $|\mathcal{P}|$ can be **exponential** in *n*.

Definition (Flow by paths.)

A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.

Example

$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \to u \to t$$

$$p_2 : s \to u \to v \to t$$

$$p_3 : s \to v \to t$$

$$f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$$

Example

Lemma

Given a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

Lemma

Given a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge *e* define $f'(e) = \sum_{p:e \in p} f(p)$.

Lemma

Given a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge *e* define
$$f'(e) = \sum_{p:e \in p} f(p)$$
.
f' satisfies capacity and conservation constraints. (Exercise)

Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

Lemma

Given a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge e define $f'(e) = \sum_{p:e \in p} f(p)$. f' satisfies capacity and conservation constraints. (Exercise) Value of f and f' are equal. (Exercise)

Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

Example

$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \to u \to t$$

$$p_2 : s \to u \to v \to t$$

$$p_3 : s \to v \to t$$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$

Example

$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \to u \to t$$

$$p_2 : s \to u \to v \to t$$

$$p_3 : s \to v \to t$$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$

$$f'(s \rightarrow u) = 14$$

$$f'(u \rightarrow v) = 4$$

$$f'(s \rightarrow v) = 6$$

$$f'(u \rightarrow t) = 10$$

$$f'(v \rightarrow t) = 10$$

Ruta (UIUC)

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$, there is a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value.

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$, there is a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, f assigns non-negative flow to at most m paths where |E| = m and |V| = n.

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$, there is a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, f assigns non-negative flow to at most m paths where |E| = m and |V| = n.

Given f', the path based flow can be computed in O(mn) time.

How to decompose the following flow:

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Solution Assign f(p) to be $\min_{e \in p} f'(e)$.

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Solution Assign f(p) to be $\min_{e \in p} f'(e)$.
- Reduce f'(e) for all $e \in p$ by f(p).

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Solution Assign f(p) to be $\min_{e \in p} f'(e)$.
- Reduce f'(e) for all $e \in p$ by f(p).
- Sepeat until no path from s to t.

Algorithm

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Solution Assign f(p) to be $\min_{e \in p} f'(e)$.
- Reduce f'(e) for all $e \in p$ by f(p).
- Sepeat until no path from s to t.

Proof Idea.

• In each iteration at least one edge has flow reduced to zero.

Algorithm

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Solution Assign f(p) to be $\min_{e \in p} f'(e)$.
- Reduce f'(e) for all $e \in p$ by f(p).
- Sepeat until no path from s to t.

Proof Idea.

- In each iteration at least one edge has flow reduced to zero.
- Hence, at most *m* iterations. Can be implemented in

Algorithm

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- Solution Assign f(p) to be $\min_{e \in p} f'(e)$.
- Reduce f'(e) for all $e \in p$ by f(p).
- Sepeat until no path from s to t.

Proof Idea.

- In each iteration at least one edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

Example

flow/capacity

Example

flow

Summary: Edge vs Path based Flow

Edge based flows:

- **o** compact representation, only *m* values to be specified, and
- 2 need to check flow conservation explicitly at each internal node.

Path flows:

- in some applications, paths more natural,
- Inot compact,
- In need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.

Back to the begining

If $f : \mathcal{P} \to \mathbb{R}^+$ is a path based flow on this network, then can paths p, p'with f(p), f(p') = 1 share edges? (A) Yes (B) No (C) May be

Capacity **1** on all edges.

Back to the begining

If $f : \mathcal{P} \to \mathbb{R}^+$ is a path based flow on this network, then can paths p, p'with f(p), f(p') = 1 share edges? (A) Yes (B) No (C) May be

Capacity **1** on all edges.

Paths with flow 1 are edge disjoint.

Back to the begining

If $f : \mathcal{P} \to \mathbb{R}^+$ is a path based flow on this network, then can paths p, p'with f(p), f(p') = 1 share edges? (A) Yes (B) No (C) May be

Capacity **1** on all edges.

Paths with flow **1** are edge disjoint.

Value of the flow $\leq \#$ edge disjoint paths. (Exercise)

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value.

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value.

Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

Part II

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

- Cut may leave $t \rightarrow s$ paths!
- There might be many s-t cuts.

${f s}-{f t}$ cuts A death by a thousand cuts

Minimal Cut

Definition (Minimal s-t cut.)

Given a *s*-*t* flow network G = (V, E), $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.

Minimal Cut

Definition (Minimal s-t cut.)

Given a *s*-*t* flow network G = (V, E), $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.

Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

Ruta (UIUC)

Definition (Minimal s-t cut.)

Given a *s*-*t* flow network G = (V, E) with *n* vertices and *m* edges, $E' \subseteq E$ is a minimal cut if for all $e \in E'$, $E' \setminus \{e\}$ is not a cut.

Checking if a set E' forms a minimal s-t cut can be done in

- (A) O(n+m).
- (B) $O(n \log n + m)$.
- (C) $O((n+m)\log n)$.
- (D) O(nm).
- (E) $O(nm \log n)$.
- (F) You flow, me cut.

Let $A \subset V$ such that • $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$). The cut (A, B) is the set of edges

 $c(A,B) = \{(u,v) \in E \mid u \in A, v \in B\}.$

Let $A \subset V$ such that • $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$). The **cut** (A, B) is the set of edges

 $c(A,B) = \{(u,v) \in E \mid u \in A, v \in B\}.$

Cut c(A, B) is set of edges leaving A.

Let $A \subset V$ such that • $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$). The **cut** (A, B) is the set of edges

 $c(A,B) = \{(u,v) \in E \mid u \in A, v \in B\}.$

Cut c(A, B) is set of edges leaving A.

Claim

c(A, B) is an s-t cut.

Let $A \subset V$ such that • $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$). The cut (A, B) is the set of edges $c(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}.$

Cut c(A, B) is set of edges leaving A.

$\begin{array}{c} & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Claim

c(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in c(A, B).

Ruta (UIUC)

Spring 2018

29 / 39

Lemma

Suppose E' is an s-t cut. Then there is a cut c(A, B) such that $c(A, B) \subseteq E'$.

Lemma

Suppose E' is an s-t cut. Then there is a cut c(A, B) such that $c(A, B) \subseteq E'$.

Proof.

- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since E' is a cut, $t \not\in A$.

Lemma

Suppose E' is an s-t cut. Then there is a cut c(A, B) such that $c(A, B) \subseteq E'$.

Proof.

- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since E' is a cut, $t \notin A$.
- Solution: c(A, B) ⊆ E'. If not, then some edge (u, v) ∈ c(A, B) is not in E'.

Lemma

Suppose E' is an s-t cut. Then there is a cut c(A, B) such that $c(A, B) \subseteq E'$.

Proof.

- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since E' is a cut, $t \notin A$.
- Claim: c(A, B) ⊆ E'. If not, then some edge
 (u, v) ∈ c(A, B) is not in E'. This implies, (i) v ∉ A, (ii) v
 will be reachable by s and should be in A.

Lemma

Suppose E' is an s-t cut. Then there is a cut c(A, B) such that $c(A, B) \subseteq E'$.

Proof.

- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since E' is a cut, $t \notin A$.
- Claim: c(A, B) ⊆ E'. If not, then some edge
 (u, v) ∈ c(A, B) is not in E'. This implies, (i) v ∉ A, (ii) v
 will be reachable by s and should be in A. A contradiction.

Lemma

Suppose E' is an s-t cut. Then there is a cut c(A, B) such that $c(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let A be set of all nodes reachable by s in (V, E E').
- **2** Since E' is a cut, $t \not\in A$.
- Claim: c(A, B) ⊆ E'. If not, then some edge
 (u, v) ∈ c(A, B) is not in E'. This implies, (i) v ∉ A, (ii) v
 will be reachable by s and should be in A. A contradiction.

Corollary

Every minimal s-t cut E' is a cut of the form c(A, B).

Ruta (UIUC)

Other common notation for cuts:

Undirected graphs: G = (V, E) and $A \subset V$. $\delta_G(A)$ or $\delta(A)$ is set of edges with one end point in A and the other end point in $V \setminus A$.

Directed graphs: G = (V, E) and $A \subset V$. Edges going out of A

 $\delta^+_G(A) = \{(u, v) \in E \mid u \in A, v \in V \setminus A\}$

Edges coming into A

 $\delta^-_{G}(A) = \{(u,v) \in E \mid u \in V \setminus A, v \in A\}$

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

The minimum cut in the network flow depicted is:

- (A) 10(B) 18(C) 28
- **(D)** 30
- **(E)** 48.
- (F) No minimum cut, no cry.

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

Observation: exponential number of s-t cuts and no "easy" algorithm to find a minimum cut.

Ruta (UIUC)

The Minimum-Cut Problem

Problem

Input A flow network GGoal Find the capacity of a *minimum* s-t cut

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why? Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$. Let \mathcal{P}_e be paths assigned to $e \in E'$.

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why? Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$. Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Corollary

Maximum s-t flow \leq minimum s-t cut.

Lemma

\exists an s-t cut E', such that maximum flow = capacity of E'.

Proof.

Lemma

 \exists an s-t cut E', such that maximum flow = capacity of E'.

Proof.

Intuition: Let f be a maximum *edge* flow. Construct graph G' with edge capacities to c'(e) = c(e) - f(e). Remove edges with c'(e) = 0.

Lemma

 \exists an *s*-*t* cut *E*', such that maximum flow = capacity of *E*'.

Proof.

Intuition: Let f be a maximum *edge* flow. Construct graph G' with edge capacities to c'(e) = c(e) - f(e). Remove edges with c'(e) = 0.

Is there an $s \rightarrow t$ path in G'?

Lemma

 \exists an *s*-*t* cut *E*', such that maximum flow = capacity of *E*'.

Proof.

Intuition: Let f be a maximum *edge* flow. Construct graph G' with edge capacities to c'(e) = c(e) - f(e). Remove edges with c'(e) = 0.

Is there an $s \rightarrow t$ path in G'?

Exercise.

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum *s*-*t* flow is equal to the minimum *s*-*t* cut.

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum *s*-*t* flow is equal to the minimum *s*-*t* cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly.

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum *s*-*t* flow is equal to the minimum *s*-*t* cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly.

Many applications:

- optimization
- graph theory
- combinatorics

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value from s to t.

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.