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Question

Given a network G = (V ,E) with capacity c(e) on edge e, let
f : E → R+ be a valid edge flow.

If there is an s-t path p such that on all edges of this path f (e) < c(e).

Then,

1 We can send some more flow from s to t.

2 f is not a maximum flow in G .

3 Both of the above

4 None of the first two.
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Part I

Algorithm(s) for Maximum Flow
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Recall...

Given a network G = (V ,E) with capacity non-negative c(e) on
each edge e, an s-t (edge-based) flow f : E → R+ satisfies.

Capacity constraints: f (e) ≤ c(e) for all e ∈ E .

Flow conservation: For all vertices v ∈ V other than s, t,

(flow in to v) = (flow out of v)

Flow value:

v(f ) = (flow out of s)− (flow in to s)
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The Maximum-Flow Problem

Problem
Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G , s, t as above, show that one can remove all
edges into s and all edges out of t without affecting the flow value
between s and t.

Flow value: v(f ) = (flow out of s)
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Greedy Approach

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

1 Begin with f (e) = 0 for each edge.

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P.

3 Augment flow along this path.

4 Repeat augmentation for as long as
possible.
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Greedy Approach: Issues
Issues = What is this nonsense?
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1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v).
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Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).
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Residual graph has...

Given a network with n vertices and m edges, and a valid flow f in
it, the residual network Gf , has

(A) m edges.

(B) ≤ 2m edges.

(C) ≤ 2m + n edges.

(D) 4m + 2n edges.

(E) nm edges.

(F) just the right number of edges - not too many, not too few.
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.
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Residual Graph Property – Intuition

Let f and f ′ be two flows in G with v(f ′) ≥ v(f ).
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Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G , s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f ) > 0 in G
Recursively compute a maximum flow f ′ in Gf
Output the flow f + f ′

Iterative algorithm for finding a maximum flow:

MaxFlow(G , s, t):
Start with flow f that is 0 on all edges

while there is a flow f ′ in Gf with v(f ′) > 0 do
f = f + f ′

Update Gf

Output f
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Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf )

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f
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Example
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Example continued
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Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).
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Properties of Augmentation
Conservation Constraint

s t

Gf

G

s t

−

+ + + + +

−

+

+ − + +

+

+

Figure: Augmenting path P in Gf and corresponding change of flow in
G . Red edges are backward edges.
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Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proof by Induction.
Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in
(j + 1)st iteration, minimum capacity edge b is an integer.

And so flow after augmentation is an integer.
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Progress in Ford-Fulkerson

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f ) < v(f ′).

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

1 First edge e in P must leave s.

2 Since no incoming edges to s in G , e is a forward edge.

3 P is simple and so never returns to s.

4 Thus, value of flow increases by the flow on edge e.

Since edges in Gf have integer capacities, v(f ′) ≥ v(f ) + 1.
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Termination proof for integral flow (through cuts)

Theorem
Let C be the minimum cut value. We know max-flow ≤ C .

Ford-Fulkerson algorithm terminates after finding at most
augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time
1 Number of iterations ≤ C .

2 Number of edges in Gf

≤ 2m

.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).
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Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be
as Ω(mC) or is our analysis weak?
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Ford-Fulkerson can take Ω(C) iterations.
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Correctness of Ford-Fulkerson
Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Lemma
Let f ∗ be a maximum flow. For any feasible flow f , there is a flow f ′

in Gf of value v(f ∗)− v(f ).

No s to t flow in Gf then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow.
Also shows that maximum flow is equal to minimum cut! Exercise
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Recalling Cuts

Definition
Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′. Capacity of cut E ′ is

∑
e∈E ′ c(e).

Let A ⊂ V such that

1 s ∈ A, t 6∈ A, and

2 B = V \ −A and hence t ∈ B.

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim
(A,B) is an s-t cut.

Recall: Every minimal s-t cut E ′ is a cut of the form (A,B).
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Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f ) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t

1 s ∈ A and t ∈ B. So (A,B) is an s-t
cut in G .

2 If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f (e) = c(e) (saturated
edge) because otherwise v is reachable
from s in Gf .
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Lemma Proof Continued

Proof.

s

u

v′

u′

v

t

1 If e = (u′, v ′) ∈ G with u′ ∈ B and
v ′ ∈ A, then f (e) = 0 because
otherwise u′ is reachable from s in Gf

2 Thus,

v(f ) = f out(A)− f in(A)

= f out(A)− 0

= c(A,B)− 0

= c(A,B).
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Ford-Fulkerson Correctness

Theorem
The flow returned by the algorithm is the maximum flow.

Proof.
1 For any flow f and s-t cut (A,B), v(f ) ≤ c(A,B).

2 For flow f ∗ returned by algorithm, v(f ∗) = c(A∗,B∗) for
some s-t cut (A∗,B∗).

3 Hence, f ∗ is maximum.
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Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G , the value of a maximum s-t flow is equal to the
capacity of the minimum s-t cut.

Proof.
Ford-Fulkerson algorithm terminates with a maximum flow of value
equal to the capacity of a (minimum) cut.
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Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G with integer capacities, there is a maximum s-t
flow that is integer valued.

Proof.
Ford-Fulkerson algorithm produces an integer valued flow when
capacities are integers.
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Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

1 Compute an s-t maximum flow f in G
2 Obtain the residual graph Gf

3 Find the nodes A reachable from s in Gf

4 Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}. Note:
The cut is found in G while A is found in Gf

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check
if f is a maximum flow and if it is, outputs a minimum cut. How?
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Does it terminate?

(A) algFordFulkerson always terminates.

(B) algFordFulkerson might not terminate if the input has
real numbers.

(C) algFordFulkerson might not terminate if the input has
rational numbers.

(D) algFordFulkerson might not terminate if the input is only
integer numbers that are sufficiently large.
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Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be
achieved?
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Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a
polynomial time algorithm? Can we choose an augmenting path in
some clever way? Yes! Two variants.

1 Choose the augmenting path with largest bottleneck capacity.

2 Choose the shortest augmenting path.
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Part II

Polynomial-time Augmenting Path
Algorithms
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Augmenting along high capacity paths

Definition
Given G = (V ,E) with edge capacities and a path P, the bottlneck
capacity of P is smallest capacity among edges of P.

Algorithm: In each iteration of Ford-Fulkerson choose an
augmenting path with largest bottleneck capacity.

Question: How many iterations does the algorithm take?
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Finding path with largest bottleneck capacity

Gf - residual network with (residual) capacities.
n vertices and m edges.
Finding the s-t path with largest bottleneck capacity can be done
(faster is better) in:

(A) O(n + m)

(B) O(m + n log n)

(C) O(nm)

(D) O(m2)

(E) O(m3)

time (expected or deterministic is fine here).
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Augmenting Paths with Large Bottleneck Capacity

Now on let C be the largest edge capacity in G , i.e. C = maxe c(e)

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?
1 Assume we know ∆ is the largest bottleneck capacity.
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)
6 Max bottleneck capacity is one of the edge capacities. Why?
7 Can do binary search on the edge capacities. First, sort the

edges by their capacities and then do binary search on that
array as before.

8 Algorithm’s running time is O(m log m).
9 Alternative algorithm: modify Dijkstra to get O(m + n log n).
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Analyzing number of iterations

G = (V ,E) flow network with integer capacities. F ∗ is max
s-t-flow value.

Theorem
Algorithm terminates in O(m log F ∗) iterations.

Suppose algorithm takes k iterations. Let αi be flow value after i
iterations. α0 = 0. In Ford-Fulkerson we have αi+1 ≥ αi + 1. For
the new algorithm we have,

Lemma
If algorithm does not terminate after the i ’th iteration, amount of
flow augmented in (i + 1)st iteration is at least

max{1, (F ∗ − αi)/m}.
Hence, αi+1 − αi ≥ max{1, (F ∗ − αi)/m}.
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Analyzing number of iterations

Assume lemma. Let βi = F ∗ − αi be residual flow left after i
iterations. We have β0 = F ∗.

βi − βi+1 = αi+1 − αi ≥ (F ∗ − αi)/m = βi/m

implies
βi+1 ≤ (1− 1/m)βi

Therefore, for k ≥ 1,

βk ≤ (1− 1/m)kβ0 ≤ (1− 1/m)kF ∗

Thus, after k = m ln F ∗ iterations,
βk ≤ (1− 1/m)m ln F∗F ∗ ≤ exp(− ln F ∗)F ∗ ≤ 1

This implies that algorithm terminates in 1 + m ln F ∗ iterations.
And F ∗ ≤ mC and hence algorithm terminates in O(m log mC)
iterations.
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Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ?

(F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.
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Running time analysis

Each iteration requires finding a max bottleneck capacity path in
residual graph. Can be found in O(n log n + m) or in
O(m log C) time.

Number of iterations is O(m log mC).

Hence overall running time is O(m2 log mC log C) or
O(mn log n log mC + m2 log mC).
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Strongly polynomial time algorithm

Many problems has inputs with two types of information:

combinatorial

numerical

Example:
Graph problems: vertices and edges are combinatorial part and
edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called strongly
polynomial if its running time is a polynomial and it does not depend
on the numerical part. Here, we assume that standard arithmetic
operations on the input numbers takes constant time.
Otherwise it is weakly polynomial.
It is pseudo-polynomial if the run-time is polynomial assuming
numerical data is in unary.
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A strongly polynomial time algorithm for max flow

Algorithm: In each iteration of Ford-Fulkerson choose a shortest
augmenting path in the residual graph.

algEdmondsKarp
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

Perform BFS in Gf
P: shortest s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

Theorem
Algorithm terminates in O(mn) iterations. Thus, overall running
time is O(m2n).
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Orlin’s Algorithm

Currently, fastest strongly polynomial time algorithm runs in
O(mn) time.

O(mn) time is also sufficient to do flow-decomposition

You can state and use the above results in a black box fashion when
using maximum flow algorithms in reductions.
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