
CS 473: Algorithms, Spring 2018

Network Flow Algorithms
Lecture 14
Feb 8, 2018

Most slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 1 Spring 2018 1 / 47



Question

Given a network G = (V ,E) with capacity c(e) on edge e, let
f : E → R+ be a valid edge flow.

If there is an s-t path p such that on all edges of this path f (e) < c(e).

Then,

1 We can send some more flow from s to t.

2 f is not a maximum flow in G .

3 Both of the above

4 None of the first two.

Ruta (UIUC) CS473 2 Spring 2018 2 / 47



Part I

Algorithm(s) for Maximum Flow

Ruta (UIUC) CS473 3 Spring 2018 3 / 47



Recall...

Given a network G = (V ,E) with capacity non-negative c(e) on
each edge e, an s-t (edge-based) flow f : E → R+ satisfies.

Capacity constraints: f (e) ≤ c(e) for all e ∈ E .

Flow conservation: For all vertices v ∈ V other than s, t,

(flow in to v) = (flow out of v)

Flow value:

v(f ) = (flow out of s)− (flow in to s)

Ruta (UIUC) CS473 4 Spring 2018 4 / 47



The Maximum-Flow Problem

Problem
Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G , s, t as above, show that one can remove all
edges into s and all edges out of t without affecting the flow value
between s and t.

Flow value: v(f ) = (flow out of s)

Ruta (UIUC) CS473 5 Spring 2018 5 / 47



The Maximum-Flow Problem

Problem
Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G , s, t as above, show that one can remove all
edges into s and all edges out of t without affecting the flow value
between s and t.

Flow value: v(f ) = (flow out of s)

Ruta (UIUC) CS473 5 Spring 2018 5 / 47



Question

Given a network G = (V ,E) with capacity c(e) on edge e, let
f : E → R+ be a valid edge flow.

If there is an s-t path p such that on all edges of this path f (e) < c(e).

Then,

1 We can send some more flow from s to t.

2 f is not a maximum flow in G .

3 Both of the above

4 None of the first two.

Ruta (UIUC) CS473 6 Spring 2018 6 / 47



Greedy Approach

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

1 Begin with f (e) = 0 for each edge.

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P.

3 Augment flow along this path.

4 Repeat augmentation for as long as
possible.

Ruta (UIUC) CS473 7 Spring 2018 7 / 47



Greedy Approach

10

10

s

v

u

t

10

/
3
0

/2
0/10

/2
0 /10

1 Begin with f (e) = 0 for each edge.

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P.

3 Augment flow along this path.

4 Repeat augmentation for as long as
possible.

Ruta (UIUC) CS473 7 Spring 2018 7 / 47



Greedy Approach
10

10

10

10

s

v

u

t

10

/
3
0

/2
0/10

/2
0 /10

1 Begin with f (e) = 0 for each edge.

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P.

3 Augment flow along this path.

4 Repeat augmentation for as long as
possible.

Ruta (UIUC) CS473 7 Spring 2018 7 / 47



Greedy Approach

1
0

20

10

20

10

s

v

u

t10

/
3
0

/2
0/10

/2
0 /10

1 Begin with f (e) = 0 for each edge.

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P.

3 Augment flow along this path.

4 Repeat augmentation for as long as
possible.

Ruta (UIUC) CS473 7 Spring 2018 7 / 47



Greedy Approach: Issues
Issues = What is this nonsense?

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v).

Ruta (UIUC) CS473 8 Spring 2018 8 / 47



Greedy Approach: Issues
Issues = What is this nonsense?

s

v

u

t

/
3
0

/2
0/10

/2
0 /1020 2

0

20

20

1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v).

Ruta (UIUC) CS473 8 Spring 2018 8 / 47



Greedy Approach: Issues
Issues = What is this nonsense?

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0

1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u, v).

Ruta (UIUC) CS473 8 Spring 2018 8 / 47



Greedy Approach: Issues
Issues = What is this nonsense?

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

1010

2
0

2
0

1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u, v).

Ruta (UIUC) CS473 8 Spring 2018 8 / 47



Greedy Approach: Issues
Issues = What is this nonsense?

s

v

u

t

/
3
0

/2
0/10

/2
0 /10=

1
0

︷︸︸︷
2
0
−

1
0

1010

20

20

1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v).

Ruta (UIUC) CS473 8 Spring 2018 8 / 47



Greedy Approach: Issues
Issues = What is this nonsense?

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

1010

20

20

10

1
0

1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v).

Ruta (UIUC) CS473 8 Spring 2018 8 / 47



Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 9 Spring 2018 9 / 47



Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 9 Spring 2018 9 / 47



Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 9 Spring 2018 9 / 47



Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 9 Spring 2018 9 / 47



Residual graph has...

Given a network with n vertices and m edges, and a valid flow f in
it, the residual network Gf , has

(A) m edges.

(B) ≤ 2m edges.

(C) ≤ 2m + n edges.

(D) 4m + 2n edges.

(E) nm edges.

(F) just the right number of edges - not too many, not too few.

Ruta (UIUC) CS473 10 Spring 2018 10 / 47



Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 11 Spring 2018 11 / 47



Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 11 Spring 2018 11 / 47



Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 11 Spring 2018 11 / 47



Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 11 Spring 2018 11 / 47



Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 11 Spring 2018 11 / 47



Residual Graph Property – Intuition

Let f and f ′ be two flows in G with v(f ′) ≥ v(f ).

Ruta (UIUC) CS473 12 Spring 2018 12 / 47



Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G , s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f ) > 0 in G
Recursively compute a maximum flow f ′ in Gf
Output the flow f + f ′

Iterative algorithm for finding a maximum flow:

MaxFlow(G , s, t):
Start with flow f that is 0 on all edges

while there is a flow f ′ in Gf with v(f ′) > 0 do
f = f + f ′

Update Gf

Output f

Ruta (UIUC) CS473 13 Spring 2018 13 / 47



Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G , s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f ) > 0 in G
Recursively compute a maximum flow f ′ in Gf
Output the flow f + f ′

Iterative algorithm for finding a maximum flow:

MaxFlow(G , s, t):
Start with flow f that is 0 on all edges

while there is a flow f ′ in Gf with v(f ′) > 0 do
f = f + f ′

Update Gf

Output f

Ruta (UIUC) CS473 13 Spring 2018 13 / 47



Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf )

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f

Ruta (UIUC) CS473 14 Spring 2018 14 / 47



Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf )

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f

Ruta (UIUC) CS473 14 Spring 2018 14 / 47



Example

f Gf

s

u

v

ts

u

v

t

10 30

10

1520

s

u

v

ts

u

v

t

10 30
10

1520

Ruta (UIUC) CS473 15 Spring 2018 15 / 47



Example continued

f Gf

s

u

v

ts

u

v

t

10 30

10

1520

s

u

v

ts

u

v

t

10 30
10

1520

Ruta (UIUC) CS473 16 Spring 2018 16 / 47



Example continued

f Gf

s

u

v

ts

u

v

t

10 30

10

1520

s

u

v

ts

u

v

t

10 30
10

1520

Ruta (UIUC) CS473 17 Spring 2018 17 / 47



Example continued

f Gf

s

u

v

ts

u

v

t

10 30

10

1520

s

u

v

ts

u

v

t

10 30
10

1520

Ruta (UIUC) CS473 18 Spring 2018 18 / 47



Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).

Ruta (UIUC) CS473 19 Spring 2018 19 / 47



Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).

Ruta (UIUC) CS473 19 Spring 2018 19 / 47



Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)

⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).

Ruta (UIUC) CS473 19 Spring 2018 19 / 47



Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).

Ruta (UIUC) CS473 19 Spring 2018 19 / 47



Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)

⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).

Ruta (UIUC) CS473 19 Spring 2018 19 / 47



Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).

Ruta (UIUC) CS473 19 Spring 2018 19 / 47



Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e)⇒ f ′(e) ≤ c(e).

If (u, v) ∈ P is a backward edge, then let e = (v , u).
c(u, v) in Gf is f (e)⇒ b ≤ f (e). ∴ f ′(e) = f (e)− b ≥ 0.

2 Conservation constraint: Let v be an internal node. Let e1, e2 be

edges of P incident to v . Four cases based on whether e1, e2 are

forward or backward edges. Check cases (see fig next slide).

Ruta (UIUC) CS473 19 Spring 2018 19 / 47



Properties of Augmentation
Conservation Constraint

s t

Gf

G

s t

−

+ + + + +

−

+

+ − + +

+

+

Figure: Augmenting path P in Gf and corresponding change of flow in
G . Red edges are backward edges.

Ruta (UIUC) CS473 20 Spring 2018 20 / 47



Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proof by Induction.
Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in
(j + 1)st iteration, minimum capacity edge b is an integer.

And so flow after augmentation is an integer.

Ruta (UIUC) CS473 21 Spring 2018 21 / 47



Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proof by Induction.
Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in
(j + 1)st iteration, minimum capacity edge b is an integer.

And so flow after augmentation is an integer.

Ruta (UIUC) CS473 21 Spring 2018 21 / 47



Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proof by Induction.
Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in
(j + 1)st iteration, minimum capacity edge b is

an integer.

And so flow after augmentation is an integer.

Ruta (UIUC) CS473 21 Spring 2018 21 / 47



Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proof by Induction.
Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in
(j + 1)st iteration, minimum capacity edge b is an integer.

And so flow after augmentation is an integer.

Ruta (UIUC) CS473 21 Spring 2018 21 / 47



Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proof by Induction.
Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in
(j + 1)st iteration, minimum capacity edge b is an integer.

And so flow after augmentation is an integer.

Ruta (UIUC) CS473 21 Spring 2018 21 / 47



Progress in Ford-Fulkerson

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f ) < v(f ′).

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

1 First edge e in P must leave s.

2 Since no incoming edges to s in G , e is a forward edge.

3 P is simple and so never returns to s.

4 Thus, value of flow increases by the flow on edge e.

Since edges in Gf have integer capacities, v(f ′) ≥ v(f ) + 1.

Ruta (UIUC) CS473 22 Spring 2018 22 / 47



Progress in Ford-Fulkerson

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f ) < v(f ′).

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

1 First edge e in P must leave s.

2 Since no incoming edges to s in G , e is a forward edge.

3 P is simple and so never returns to s.

4 Thus, value of flow increases by the flow on edge e.

Since edges in Gf have integer capacities, v(f ′) ≥ v(f ) + 1.

Ruta (UIUC) CS473 22 Spring 2018 22 / 47



Progress in Ford-Fulkerson

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f ) < v(f ′).

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

1 First edge e in P must leave s.

2 Since no incoming edges to s in G , e is a forward edge.

3 P is simple and so never returns to s.

4 Thus, value of flow increases by the flow on edge e.

Since edges in Gf have integer capacities, v(f ′) ≥ v(f ) + 1.

Ruta (UIUC) CS473 22 Spring 2018 22 / 47



Progress in Ford-Fulkerson

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f ) < v(f ′).

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

1 First edge e in P must leave s.

2 Since no incoming edges to s in G , e is a forward edge.

3 P is simple and so never returns to s.

4 Thus, value of flow increases by the flow on edge e.

Since edges in Gf have integer capacities, v(f ′) ≥ v(f ) + 1.

Ruta (UIUC) CS473 22 Spring 2018 22 / 47



Termination proof for integral flow (through cuts)

Theorem
Let C be the minimum cut value. We know max-flow ≤ C .

Ford-Fulkerson algorithm terminates after finding at most
augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time
1 Number of iterations ≤ C .

2 Number of edges in Gf

≤ 2m

.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).

Ruta (UIUC) CS473 23 Spring 2018 23 / 47



Termination proof for integral flow (through cuts)

Theorem
Let C be the minimum cut value. We know max-flow ≤ C .
Ford-Fulkerson algorithm terminates after finding at most ??
augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time
1 Number of iterations ≤ C .

2 Number of edges in Gf

≤ 2m

.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).

Ruta (UIUC) CS473 23 Spring 2018 23 / 47



Termination proof for integral flow (through cuts)

Theorem
Let C be the minimum cut value. We know max-flow ≤ C .
Ford-Fulkerson algorithm terminates after finding at most C
augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time
1 Number of iterations ≤ C .

2 Number of edges in Gf

≤ 2m

.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).

Ruta (UIUC) CS473 23 Spring 2018 23 / 47



Termination proof for integral flow (through cuts)

Theorem
Let C be the minimum cut value. We know max-flow ≤ C .
Ford-Fulkerson algorithm terminates after finding at most C
augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time
1 Number of iterations ≤ C .

2 Number of edges in Gf

≤ 2m

.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).

Ruta (UIUC) CS473 23 Spring 2018 23 / 47



Termination proof for integral flow (through cuts)

Theorem
Let C be the minimum cut value. We know max-flow ≤ C .
Ford-Fulkerson algorithm terminates after finding at most C
augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time
1 Number of iterations ≤ C .

2 Number of edges in Gf ≤ 2m.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).
Ruta (UIUC) CS473 23 Spring 2018 23 / 47



Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be
as Ω(mC) or is our analysis weak?

s

v

u

t
C

C

C

C

1 s

v

u

t
C

C

1

C − 1

1

C − 1

1

Ford-Fulkerson can take Ω(C) iterations.

Ruta (UIUC) CS473 24 Spring 2018 24 / 47



Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be
as Ω(mC) or is our analysis weak?

s

v

u

t
C

C

C

C

1

s

v

u

t
C

C

1

C − 1

1

C − 1

1

Ford-Fulkerson can take Ω(C) iterations.

Ruta (UIUC) CS473 24 Spring 2018 24 / 47



Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be
as Ω(mC) or is our analysis weak?

s

v

u

t
C

C

C

C

1 s

v

u

t
C

C

1

C − 1

1

C − 1

1

Ford-Fulkerson can take Ω(C) iterations.

Ruta (UIUC) CS473 24 Spring 2018 24 / 47



Correctness of Ford-Fulkerson
Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Lemma
Let f ∗ be a maximum flow. For any feasible flow f , there is a flow f ′

in Gf of value v(f ∗)− v(f ).

No s to t flow in Gf then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow.
Also shows that maximum flow is equal to minimum cut! Exercise

Ruta (UIUC) CS473 25 Spring 2018 25 / 47



Correctness of Ford-Fulkerson
Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Lemma
Let f ∗ be a maximum flow. For any feasible flow f , there is a flow f ′

in Gf of value v(f ∗)− v(f ).

No s to t flow in Gf then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow.
Also shows that maximum flow is equal to minimum cut! Exercise

Ruta (UIUC) CS473 25 Spring 2018 25 / 47



Correctness of Ford-Fulkerson
Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Lemma
Let f ∗ be a maximum flow. For any feasible flow f , there is a flow f ′

in Gf of value v(f ∗)− v(f ).

No s to t flow in Gf then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow.
Also shows that maximum flow is equal to minimum cut! Exercise

Ruta (UIUC) CS473 25 Spring 2018 25 / 47



Correctness of Ford-Fulkerson
Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Lemma
Let f ∗ be a maximum flow. For any feasible flow f , there is a flow f ′

in Gf of value v(f ∗)− v(f ).

No s to t flow in Gf then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow.
Also shows that maximum flow is equal to minimum cut!

Exercise

Ruta (UIUC) CS473 25 Spring 2018 25 / 47



Correctness of Ford-Fulkerson
Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Lemma
Let f ∗ be a maximum flow. For any feasible flow f , there is a flow f ′

in Gf of value v(f ∗)− v(f ).

No s to t flow in Gf then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow.
Also shows that maximum flow is equal to minimum cut! Exercise

Ruta (UIUC) CS473 25 Spring 2018 25 / 47



Recalling Cuts

Definition
Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′. Capacity of cut E ′ is

∑
e∈E ′ c(e).

Let A ⊂ V such that

1 s ∈ A, t 6∈ A, and

2 B = V \ −A and hence t ∈ B.

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim
(A,B) is an s-t cut.

Recall: Every minimal s-t cut E ′ is a cut of the form (A,B).

Ruta (UIUC) CS473 26 Spring 2018 26 / 47



Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f ) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t

1 s ∈ A and t ∈ B. So (A,B) is an s-t
cut in G .

2 If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f (e) = c(e) (saturated
edge) because otherwise v is reachable
from s in Gf .

Ruta (UIUC) CS473 27 Spring 2018 27 / 47



Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f ) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t

1 s ∈ A and t ∈ B. So (A,B) is an s-t
cut in G .

2 If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f (e) = c(e) (saturated
edge) because otherwise v is reachable
from s in Gf .

Ruta (UIUC) CS473 27 Spring 2018 27 / 47



Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f ) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t

1 s ∈ A and t ∈ B. So (A,B) is an s-t
cut in G .

2 If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f (e) = c(e) (saturated
edge) because otherwise v is reachable
from s in Gf .

Ruta (UIUC) CS473 27 Spring 2018 27 / 47



Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f ) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t

1 s ∈ A and t ∈ B. So (A,B) is an s-t
cut in G .

2 If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f (e) = c(e) (saturated
edge) because otherwise v is reachable
from s in Gf .

Ruta (UIUC) CS473 27 Spring 2018 27 / 47



Lemma Proof Continued

Proof.

s

u

v′

u′

v

t

1 If e = (u′, v ′) ∈ G with u′ ∈ B and
v ′ ∈ A, then f (e) = 0 because
otherwise u′ is reachable from s in Gf

2 Thus,

v(f ) = f out(A)− f in(A)

= f out(A)− 0

= c(A,B)− 0

= c(A,B).

Ruta (UIUC) CS473 28 Spring 2018 28 / 47



Example

ts

10/20

5/10

5/5

5/10

10/10

5/20

10/15

5/10

ts

0/15

10

10

5

10

5

10

15

5

5

5

5

15

5

Flow f

Residual graph Gf : no s-t path

5

5

ts

0/15

10

10

5

10

5

10

15

5

5

5

5

15

5

Flow f

A is reachable set from s in Gf

A B

A B

ts

10/20

5/10

5/5

5/10

10/10

5/20

10/15

5/10

5

5

Ruta (UIUC) CS473 29 Spring 2018 29 / 47



Example

ts

10/20

5/10

5/5

5/10

10/10

5/20

10/15

5/10

ts

0/15

10

10

5

10

5

10

15

5

5

5

5

15

5

Flow f

Residual graph Gf : no s-t path

5

5 ts

0/15

10

10

5

10

5

10

15

5

5

5

5

15

5

Flow f

A is reachable set from s in Gf

A B

A B

ts

10/20

5/10

5/5

5/10

10/10

5/20

10/15

5/10

5

5

Ruta (UIUC) CS473 29 Spring 2018 29 / 47



Ford-Fulkerson Correctness

Theorem
The flow returned by the algorithm is the maximum flow.

Proof.
1 For any flow f and s-t cut (A,B), v(f ) ≤ c(A,B).

2 For flow f ∗ returned by algorithm, v(f ∗) = c(A∗,B∗) for
some s-t cut (A∗,B∗).

3 Hence, f ∗ is maximum.

Ruta (UIUC) CS473 30 Spring 2018 30 / 47



Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G , the value of a maximum s-t flow is equal to the
capacity of the minimum s-t cut.

Proof.
Ford-Fulkerson algorithm terminates with a maximum flow of value
equal to the capacity of a (minimum) cut.

Ruta (UIUC) CS473 31 Spring 2018 31 / 47



Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G with integer capacities, there is a maximum s-t
flow that is integer valued.

Proof.
Ford-Fulkerson algorithm produces an integer valued flow when
capacities are integers.

Ruta (UIUC) CS473 32 Spring 2018 32 / 47



Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

1 Compute an s-t maximum flow f in G
2 Obtain the residual graph Gf

3 Find the nodes A reachable from s in Gf

4 Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}. Note:
The cut is found in G while A is found in Gf

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check
if f is a maximum flow and if it is, outputs a minimum cut. How?

Ruta (UIUC) CS473 33 Spring 2018 33 / 47



Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

1 Compute an s-t maximum flow f in G
2 Obtain the residual graph Gf

3 Find the nodes A reachable from s in Gf

4 Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}. Note:
The cut is found in G while A is found in Gf

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check
if f is a maximum flow and if it is, outputs a minimum cut. How?

Ruta (UIUC) CS473 33 Spring 2018 33 / 47



Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

1 Compute an s-t maximum flow f in G
2 Obtain the residual graph Gf

3 Find the nodes A reachable from s in Gf

4 Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}. Note:
The cut is found in G while A is found in Gf

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check
if f is a maximum flow and if it is, outputs a minimum cut. How?

Ruta (UIUC) CS473 33 Spring 2018 33 / 47



Does it terminate?

(A) algFordFulkerson always terminates.

(B) algFordFulkerson might not terminate if the input has
real numbers.

(C) algFordFulkerson might not terminate if the input has
rational numbers.

(D) algFordFulkerson might not terminate if the input is only
integer numbers that are sufficiently large.

Ruta (UIUC) CS473 34 Spring 2018 34 / 47



Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be
achieved?

s

v

u

t
C

C

C

C

1 s

v

u

t
C

C

1

C − 1

1

C − 1

1

Ruta (UIUC) CS473 35 Spring 2018 35 / 47



Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be
achieved?

s

v

u

t
C

C

C

C

1

s

v

u

t
C

C

1

C − 1

1

C − 1

1

Ruta (UIUC) CS473 35 Spring 2018 35 / 47



Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be
achieved?

s

v

u

t
C

C

C

C

1 s

v

u

t
C

C

1

C − 1

1

C − 1

1

Ruta (UIUC) CS473 35 Spring 2018 35 / 47



Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a
polynomial time algorithm? Can we choose an augmenting path in
some clever way? Yes! Two variants.

1 Choose the augmenting path with largest bottleneck capacity.

2 Choose the shortest augmenting path.

Ruta (UIUC) CS473 36 Spring 2018 36 / 47



Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a
polynomial time algorithm? Can we choose an augmenting path in
some clever way?

Yes! Two variants.

1 Choose the augmenting path with largest bottleneck capacity.

2 Choose the shortest augmenting path.

Ruta (UIUC) CS473 36 Spring 2018 36 / 47



Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a
polynomial time algorithm? Can we choose an augmenting path in
some clever way? Yes! Two variants.

1 Choose the augmenting path with largest bottleneck capacity.

2 Choose the shortest augmenting path.

Ruta (UIUC) CS473 36 Spring 2018 36 / 47



Part II

Polynomial-time Augmenting Path
Algorithms

Ruta (UIUC) CS473 37 Spring 2018 37 / 47



Augmenting along high capacity paths

Definition
Given G = (V ,E) with edge capacities and a path P, the bottlneck
capacity of P is smallest capacity among edges of P.

Algorithm: In each iteration of Ford-Fulkerson choose an
augmenting path with largest bottleneck capacity.

Question: How many iterations does the algorithm take?

Ruta (UIUC) CS473 38 Spring 2018 38 / 47



Finding path with largest bottleneck capacity

Gf - residual network with (residual) capacities.
n vertices and m edges.
Finding the s-t path with largest bottleneck capacity can be done
(faster is better) in:

(A) O(n + m)

(B) O(m + n log n)

(C) O(nm)

(D) O(m2)

(E) O(m3)

time (expected or deterministic is fine here).

Ruta (UIUC) CS473 39 Spring 2018 39 / 47



Augmenting Paths with Large Bottleneck Capacity

Now on let C be the largest edge capacity in G , i.e. C = maxe c(e)

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?
1 Assume we know ∆ is the largest bottleneck capacity.
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)
6 Max bottleneck capacity is one of the edge capacities. Why?
7 Can do binary search on the edge capacities. First, sort the

edges by their capacities and then do binary search on that
array as before.

8 Algorithm’s running time is O(m log m).
9 Alternative algorithm: modify Dijkstra to get O(m + n log n).

Ruta (UIUC) CS473 40 Spring 2018 40 / 47



Augmenting Paths with Large Bottleneck Capacity

Now on let C be the largest edge capacity in G , i.e. C = maxe c(e)

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?

1 Assume we know ∆ is the largest bottleneck capacity.
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)
6 Max bottleneck capacity is one of the edge capacities. Why?
7 Can do binary search on the edge capacities. First, sort the

edges by their capacities and then do binary search on that
array as before.

8 Algorithm’s running time is O(m log m).
9 Alternative algorithm: modify Dijkstra to get O(m + n log n).

Ruta (UIUC) CS473 40 Spring 2018 40 / 47



Augmenting Paths with Large Bottleneck Capacity

Now on let C be the largest edge capacity in G , i.e. C = maxe c(e)

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?
1 Assume we know ∆ is the largest bottleneck capacity.
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)

6 Max bottleneck capacity is one of the edge capacities. Why?
7 Can do binary search on the edge capacities. First, sort the

edges by their capacities and then do binary search on that
array as before.

8 Algorithm’s running time is O(m log m).
9 Alternative algorithm: modify Dijkstra to get O(m + n log n).

Ruta (UIUC) CS473 40 Spring 2018 40 / 47



Augmenting Paths with Large Bottleneck Capacity

Now on let C be the largest edge capacity in G , i.e. C = maxe c(e)

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?
1 Assume we know ∆ is the largest bottleneck capacity.
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)
6 Max bottleneck capacity is one of the edge capacities. Why?

7 Can do binary search on the edge capacities. First, sort the
edges by their capacities and then do binary search on that
array as before.

8 Algorithm’s running time is O(m log m).
9 Alternative algorithm: modify Dijkstra to get O(m + n log n).

Ruta (UIUC) CS473 40 Spring 2018 40 / 47



Augmenting Paths with Large Bottleneck Capacity

Now on let C be the largest edge capacity in G , i.e. C = maxe c(e)

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?
1 Assume we know ∆ is the largest bottleneck capacity.
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)
6 Max bottleneck capacity is one of the edge capacities. Why?
7 Can do binary search on the edge capacities. First, sort the

edges by their capacities and then do binary search on that
array as before.

8 Algorithm’s running time is O(m log m).
9 Alternative algorithm: modify Dijkstra to get O(m + n log n).

Ruta (UIUC) CS473 40 Spring 2018 40 / 47



Analyzing number of iterations

G = (V ,E) flow network with integer capacities. F ∗ is max
s-t-flow value.

Theorem
Algorithm terminates in O(m log F ∗) iterations.

Suppose algorithm takes k iterations. Let αi be flow value after i
iterations. α0 = 0. In Ford-Fulkerson we have αi+1 ≥ αi + 1. For
the new algorithm we have,

Lemma
If algorithm does not terminate after the i ’th iteration, amount of
flow augmented in (i + 1)st iteration is at least

max{1, (F ∗ − αi)/m}.
Hence, αi+1 − αi ≥ max{1, (F ∗ − αi)/m}.

Ruta (UIUC) CS473 41 Spring 2018 41 / 47



Analyzing number of iterations

G = (V ,E) flow network with integer capacities. F ∗ is max
s-t-flow value.

Theorem
Algorithm terminates in O(m log F ∗) iterations.

Suppose algorithm takes k iterations. Let αi be flow value after i
iterations. α0 = 0. In Ford-Fulkerson we have αi+1 ≥ αi + 1. For
the new algorithm we have,

Lemma
If algorithm does not terminate after the i ’th iteration, amount of
flow augmented in (i + 1)st iteration is at least

max{1, (F ∗ − αi)/m}.

Hence, αi+1 − αi ≥ max{1, (F ∗ − αi)/m}.

Ruta (UIUC) CS473 41 Spring 2018 41 / 47



Analyzing number of iterations

G = (V ,E) flow network with integer capacities. F ∗ is max
s-t-flow value.

Theorem
Algorithm terminates in O(m log F ∗) iterations.

Suppose algorithm takes k iterations. Let αi be flow value after i
iterations. α0 = 0. In Ford-Fulkerson we have αi+1 ≥ αi + 1. For
the new algorithm we have,

Lemma
If algorithm does not terminate after the i ’th iteration, amount of
flow augmented in (i + 1)st iteration is at least

max{1, (F ∗ − αi)/m}.
Hence, αi+1 − αi ≥ max{1, (F ∗ − αi)/m}.

Ruta (UIUC) CS473 41 Spring 2018 41 / 47



Analyzing number of iterations

Assume lemma. Let βi = F ∗ − αi be residual flow left after i
iterations. We have β0 = F ∗.

βi − βi+1 = αi+1 − αi ≥ (F ∗ − αi)/m = βi/m

implies
βi+1 ≤ (1− 1/m)βi

Therefore, for k ≥ 1,

βk ≤ (1− 1/m)kβ0 ≤ (1− 1/m)kF ∗

Thus, after k = m ln F ∗ iterations,
βk ≤ (1− 1/m)m ln F∗F ∗ ≤ exp(− ln F ∗)F ∗ ≤ 1

This implies that algorithm terminates in 1 + m ln F ∗ iterations.
And F ∗ ≤ mC and hence algorithm terminates in O(m log mC)
iterations.

Ruta (UIUC) CS473 42 Spring 2018 42 / 47



Analyzing number of iterations

Assume lemma. Let βi = F ∗ − αi be residual flow left after i
iterations. We have β0 = F ∗.

βi − βi+1 = αi+1 − αi ≥ (F ∗ − αi)/m = βi/m

implies
βi+1 ≤ (1− 1/m)βi

Therefore, for k ≥ 1,

βk ≤ (1− 1/m)kβ0 ≤ (1− 1/m)kF ∗

Thus, after k = m ln F ∗ iterations,
βk ≤ (1− 1/m)m ln F∗F ∗ ≤ exp(− ln F ∗)F ∗ ≤ 1

This implies that algorithm terminates in 1 + m ln F ∗ iterations.
And F ∗ ≤ mC and hence algorithm terminates in O(m log mC)
iterations.

Ruta (UIUC) CS473 42 Spring 2018 42 / 47



Analyzing number of iterations

Assume lemma. Let βi = F ∗ − αi be residual flow left after i
iterations. We have β0 = F ∗.

βi − βi+1 = αi+1 − αi ≥ (F ∗ − αi)/m = βi/m

implies
βi+1 ≤ (1− 1/m)βi

Therefore, for k ≥ 1,

βk ≤ (1− 1/m)kβ0 ≤ (1− 1/m)kF ∗

Thus, after k = m ln F ∗ iterations,
βk ≤ (1− 1/m)m ln F∗F ∗ ≤ exp(− ln F ∗)F ∗ ≤ 1

This implies that algorithm terminates in 1 + m ln F ∗ iterations.
And F ∗ ≤ mC and hence algorithm terminates in O(m log mC)
iterations.

Ruta (UIUC) CS473 42 Spring 2018 42 / 47



Analyzing number of iterations

Assume lemma. Let βi = F ∗ − αi be residual flow left after i
iterations. We have β0 = F ∗.

βi − βi+1 = αi+1 − αi ≥ (F ∗ − αi)/m = βi/m

implies
βi+1 ≤ (1− 1/m)βi

Therefore, for k ≥ 1,

βk ≤ (1− 1/m)kβ0 ≤ (1− 1/m)kF ∗

Thus, after k = m ln F ∗ iterations,
βk ≤ (1− 1/m)m ln F∗F ∗ ≤ exp(− ln F ∗)F ∗ ≤ 1

This implies that algorithm terminates in 1 + m ln F ∗ iterations.
And F ∗ ≤ mC and hence algorithm terminates in O(m log mC)
iterations.

Ruta (UIUC) CS473 42 Spring 2018 42 / 47



Analyzing number of iterations

Assume lemma. Let βi = F ∗ − αi be residual flow left after i
iterations. We have β0 = F ∗.

βi − βi+1 = αi+1 − αi ≥ (F ∗ − αi)/m = βi/m

implies
βi+1 ≤ (1− 1/m)βi

Therefore, for k ≥ 1,

βk ≤ (1− 1/m)kβ0 ≤ (1− 1/m)kF ∗

Thus, after k = m ln F ∗ iterations,
βk ≤ (1− 1/m)m ln F∗F ∗ ≤ exp(− ln F ∗)F ∗ ≤ 1

This implies that algorithm terminates in 1 + m ln F ∗ iterations.
And F ∗ ≤ mC and hence algorithm terminates in O(m log mC)
iterations.

Ruta (UIUC) CS473 42 Spring 2018 42 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ?

(F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths?

m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow?

(F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m.

Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Proof of Lemma

fi flow in G after i iterations of value αi . Gfi is residual graph.

Max-flow value in Gfi ? (F ∗ − αi).

This flow in Gfi decomposes into flow on how many paths? m.

Implies that there is a flow of value (F ∗ − αi) in Gfi that can
be decomposed into at most m paths.

The path with maximum flow among these m paths carries at
least how much flow? (F ∗ − αi)/m. Call it path P.

Flow on max bottleneck path must be at least as large as that
on P. This implies that the amount of augmentation that the
algorithm does in iteration i + 1 is at least (F ∗ − αi)/m.

Thus, αi+1 ≥ αi + (F ∗ − αi)/m.

Ruta (UIUC) CS473 43 Spring 2018 43 / 47



Running time analysis

Each iteration requires finding a max bottleneck capacity path in
residual graph. Can be found in O(n log n + m) or in
O(m log C) time.

Number of iterations is O(m log mC).

Hence overall running time is O(m2 log mC log C) or
O(mn log n log mC + m2 log mC).

Ruta (UIUC) CS473 44 Spring 2018 44 / 47



Strongly polynomial time algorithm

Many problems has inputs with two types of information:

combinatorial

numerical

Example:
Graph problems: vertices and edges are combinatorial part and
edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called strongly
polynomial if its running time is a polynomial and it does not depend
on the numerical part. Here, we assume that standard arithmetic
operations on the input numbers takes constant time.
Otherwise it is weakly polynomial.
It is pseudo-polynomial if the run-time is polynomial assuming
numerical data is in unary.

Ruta (UIUC) CS473 45 Spring 2018 45 / 47



Strongly polynomial time algorithm

Many problems has inputs with two types of information:

combinatorial

numerical

Example:
Graph problems: vertices and edges are combinatorial part and
edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called strongly
polynomial if its running time is a polynomial and it does not depend
on the numerical part. Here, we assume that standard arithmetic
operations on the input numbers takes constant time.

Otherwise it is weakly polynomial.
It is pseudo-polynomial if the run-time is polynomial assuming
numerical data is in unary.

Ruta (UIUC) CS473 45 Spring 2018 45 / 47



Strongly polynomial time algorithm

Many problems has inputs with two types of information:

combinatorial

numerical

Example:
Graph problems: vertices and edges are combinatorial part and
edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called strongly
polynomial if its running time is a polynomial and it does not depend
on the numerical part. Here, we assume that standard arithmetic
operations on the input numbers takes constant time.
Otherwise it is weakly polynomial.

It is pseudo-polynomial if the run-time is polynomial assuming
numerical data is in unary.

Ruta (UIUC) CS473 45 Spring 2018 45 / 47



Strongly polynomial time algorithm

Many problems has inputs with two types of information:

combinatorial

numerical

Example:
Graph problems: vertices and edges are combinatorial part and
edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called strongly
polynomial if its running time is a polynomial and it does not depend
on the numerical part. Here, we assume that standard arithmetic
operations on the input numbers takes constant time.
Otherwise it is weakly polynomial.
It is pseudo-polynomial if the run-time is polynomial assuming
numerical data is in unary.

Ruta (UIUC) CS473 45 Spring 2018 45 / 47



A strongly polynomial time algorithm for max flow

Algorithm: In each iteration of Ford-Fulkerson choose a shortest
augmenting path in the residual graph.

algEdmondsKarp
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

Perform BFS in Gf
P: shortest s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

Theorem
Algorithm terminates in O(mn) iterations. Thus, overall running
time is O(m2n).

Ruta (UIUC) CS473 46 Spring 2018 46 / 47



A strongly polynomial time algorithm for max flow

Algorithm: In each iteration of Ford-Fulkerson choose a shortest
augmenting path in the residual graph.

algEdmondsKarp
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

Perform BFS in Gf
P: shortest s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

Theorem
Algorithm terminates in O(mn) iterations. Thus, overall running
time is O(m2n).

Ruta (UIUC) CS473 46 Spring 2018 46 / 47



Orlin’s Algorithm

Currently, fastest strongly polynomial time algorithm runs in
O(mn) time.

O(mn) time is also sufficient to do flow-decomposition

You can state and use the above results in a black box fashion when
using maximum flow algorithms in reductions.

Ruta (UIUC) CS473 47 Spring 2018 47 / 47


	Algorithm(s) for Maximum Flow
	Ford-Fulkerson Algorithm
	Correctness and Analysis
	Termination
	Correctness

	Polynomial Time Algorithms

	Polynomial-time Augmenting Path Algorithms
	Capacity Scaling Algorithm


