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Part I

Baseball Pennant Race
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Pennant Race
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Pennant Race: Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?

No, because Boston can win at most 91 games.
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Another Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?

Not clear unless we know what the remaining games are!
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Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant?

Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games

; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!
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Can Boston win the penant?

Team Won Left NY Bal Tor Bos
New York 3 6 − 2 3 1
Baltimore 5 4 2 − 1 1
Toronto 4 6 3 1 − 2
Boston 2 4 1 1 2 −

(A) Yes.

(B) No.
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Abstracting the Problem

Given

1 A set of teams S
2 For each x ∈ S , the current number of wins wx

3 For any x, y ∈ S , the number of remaining games gxy between
x and y

4 A team z
Can z win the pennant?

Ruta (UIUC) CS473 8 Spring 2018 8 / 30



Towards a Reduction

z can win the pennant if

1 z wins at least m games

2 no other team wins more than m games
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Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z ’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games

Ruta (UIUC) CS473 9 Spring 2018 9 / 30



Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z ’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games
1 for each x, y ∈ S the gxy games between them have to be

assigned to either x or y .

Is there an assignment of remaining games to teams such that no
team x 6= z wins more than m − wx games?
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Flow Network: The basic gadget

1 s: source

2 t: sink

3 x , y : two teams

4 gxy : number of games
remaining between x and
y .

5 wx : number of points x
has.

6 m: maximum number of
points x can win before z
starts loosing.
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gxys

m−
w
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m
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Flow Network: An Example
Can Boston win?

Team Won Left NY Bal Tor Bos
New York 90 11 − 1 6 4
Baltimore 88 6 1 − 1 4
Toronto 87 11 6 1 − 4

Boston 79 12 4 4 4 −

1 m = 79 + 12 = 91:
Boston can get at most
91 points.
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Constructing Flow Network

Notations
1 S : set of teams,

2 wx wins for each
team, and

3 gxy games left
between x and y .

4 m be the maximum
number of wins for z ,

5 and S ′ = S \ {z}.

Reduction
Construct the flow network G as
follows

1 One vertex vx for each team
x ∈ S ′, one vertex uxy for each
pair of teams x and y in S ′

2 A new source vertex s and sink t
3 Edges (s, uxy) of capacity gxy

4 Edges (vx , t) of capacity equal
m − wx

5 Edges (uxy , vx) and (uxy , vy) of
capacity∞
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Correctness of reduction

Theorem
G ′ has a maximum flow of value g∗ =

∑
x,y∈S′ gxy if and only if z

can win the most number of games (including possibly tie with other
teams).
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Proof of Correctness

Proof.
Existence of g∗ flow⇒ z wins pennant

1 An integral flow saturating edges out of s ensures that each
remaining game between x and y is played.

2 Capacity on (vx , t) edges ensures that no team wins more than
m games

Conversely, z wins pennant⇒ flow of value g∗

1 The game outcomes determines flow on edges; if x wins k of
the games against y , then flow on (uxy , vx) edge is k and on
(uxy , vy) edge is gxy − k
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Proof that z cannot win the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See Kleinberg-Tardos book for a natural interpretation of the
min-cut as a certificate.

Ruta (UIUC) CS473 15 Spring 2018 15 / 30



Proof that z cannot win the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See Kleinberg-Tardos book for a natural interpretation of the
min-cut as a certificate.

Ruta (UIUC) CS473 15 Spring 2018 15 / 30



Proof that z cannot win the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See Kleinberg-Tardos book for a natural interpretation of the
min-cut as a certificate.

Ruta (UIUC) CS473 15 Spring 2018 15 / 30



The biggest loser?

Given an input as above for the pennant competition, deciding if a
team can come in the last place

(A) Can be done using the same reduction as just seen.

(B) Can not be done using the same reduction as just seen.

(C) Can be done using flows but we need lower bounds on the
flow, instead of upper bounds.

(D) The problem is NP-Hard and requires exponential time.

(E) Can be solved by negating all the numbers, and using the
above reduction.

(F) Can be solved efficiently only by running a reality show on
the problem.
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Part II

An Application of Min-Cut to Project
Scheduling
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Project Scheduling

Problem:

1 n projects/tasks 1, 2, . . . , n
2 dependencies between projects: i depends on j implies i cannot

be done unless j is done. dependency graph is acyclic
3 each project i has a cost/profit pi

1 pi < 0 implies i requires a cost of −pi units
2 pi > 0 implies that i generates pi profit

Goal: Find projects to do so as to maximize profit.
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ExampleExample

Chekuri CS473ug
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Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi . Can be negative or positive.

Goal: find valid A to maximize profit(A).
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Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

1 We are interested in maximizing profit but we can solve
minimum cuts.

2 We need to convert negative profits into positive capacities.

3 Need to ensure that chosen projects is a valid set.

4 The cut value captures the profit of the chosen set of projects.
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Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization
problem.

1 projects represented as nodes in a graph

2 if i depends on j then (i , j) is an edge

3 add source s and sink t
4 for each i with pi > 0 add edge (s, i) with capacity pi

5 for each i with pi < 0 add edge (i , t) with capacity −pi

6 for each dependency edge (i , j) put capacity∞ (more on this
later)
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Reduction: Flow Network Example

4 6 2 3

−8−5−3−2 ∞
∞∞ ∞
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Reduction contd

Algorithm:

1 form graph as in previous slide

2 compute s-t minimum cut (A,B)

3 output the projects in A− {s}
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Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i , j) capacity is∞, implies (A,B) capacity is∞,
contradicting assumption.
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Example
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Example
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Correctness of Reduction

Recall that for a set of projects X , profit(X ) =
∑

i∈X pi .

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
c(A,B) = C − profit(A− {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i , t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have∞ edges
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Proof contd

For project set A let
1 cost(A) =

∑
i∈A:pi<0−pi

2 benefit(A) =
∑

i∈A:pi>0 pi

3 profit(A) = benefit(A)− cost(A).

Proof.
Let A′ = A ∪ {s}.

c(A′,B) = cost(A) + benefit(B)

= cost(A)− benefit(A) + benefit(A) + benefit(B)

= −profit(A) + C
= C − profit(A)
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Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A− {s} is a valid set of projects

2 c(A,B) = C − profit(A− {s})

Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use∞ in a real algorithm?

Set capacity of∞ arcs to C + 1 instead. Why does this work?
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