CS 473: Algorithms, Spring 2018

More Network Flow Applications

Lecture
March 15, 2018

Most slides are courtesy Prof. Chekuri

Part I

Baseball Pennant Race

Pennant Race

Pennant Race: Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	89	2

Can Boston win the pennant?

Pennant Race: Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	89	2

Can Boston win the pennant?
No, because Boston can win at most 91 games.

Another Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	90	2

Can Boston win the pennant?

Another Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	90	2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	-	1	1	0
Baltimore	91	3	1	-	1	1
Toronto	91	3	1	1	-	1
Boston	90	2	0	1	1	-

Can Boston win the pennant?

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	-	1	1	0
Baltimore	91	3	1	-	1	1
Toronto	91	3	1	1	-	1
Boston	90	2	0	1	1	-

Can Boston win the pennant? Suppose Boston does

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	-	1	1	0
Baltimore	91	3	1	-	1	1
Toronto	91	3	1	1	-	1
Boston	90	2	0	1	1	-

Can Boston win the pennant? Suppose Boston does
(1) Boston wins both its games to get 92 wins

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	-	1	1	0
Baltimore	91	3	1	-	1	1
Toronto	91	3	1	1	-	1
Boston	90	2	0	1	1	-

Can Boston win the pennant? Suppose Boston does
(1) Boston wins both its games to get 92 wins
(2) New York must lose both games

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	-	1	1	0
Baltimore	91	3	1	-	1	1
Toronto	91	3	1	1	-	1
Boston	90	2	0	1	1	-

Can Boston win the pennant? Suppose Boston does
(1) Boston wins both its games to get 92 wins
(2) New York must lose both games; now both Baltimore and Toronto have at least 92

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	-	1	1	0
Baltimore	91	3	1	-	1	1
Toronto	91	3	1	1	-	1
Boston	90	2	0	1	1	-

Can Boston win the pennant? Suppose Boston does
(1) Boston wins both its games to get 92 wins
(2) New York must lose both games; now both Baltimore and Toronto have at least 92
(3) Winner of Baltimore-Toronto game has 93 wins!

Can Boston win the penant?

Team	Won	Left	NY	Bal	Tor	Bos
New York	3	6	-	2	3	1
Baltimore	5	4	2	-	1	1
Toronto	4	6	3	1	-	2
Boston	2	4	1	1	2	-

(A) Yes.
(B) No.

Abstracting the Problem

Given
(1) A set of teams S
(2) For each $x \in S$, the current number of wins \boldsymbol{w}_{x}
(3) For any $x, y \in S$, the number of remaining games $g_{x y}$ between x and y
(4) A team z

Can z win the pennant?

Towards a Reduction

\bar{z} can win the pennant if
(1) \bar{z} wins at least \boldsymbol{m} games
(2) no other team wins more than \boldsymbol{m} games

Towards a Reduction

\bar{z} can win the pennant if
(1) \bar{z} wins at least \boldsymbol{m} games
(1) to maximize \bar{z} 's chances we make \bar{z} win all its remaining games and hence $\boldsymbol{m}=\boldsymbol{w}_{\bar{z}}+\sum_{\boldsymbol{x} \in S} \boldsymbol{g}_{\boldsymbol{x} \bar{z}}$
(2) no other team wins more than \boldsymbol{m} games

Towards a Reduction

\bar{z} can win the pennant if
(1) \bar{z} wins at least \boldsymbol{m} games
(1) to maximize \bar{z} 's chances we make \bar{z} win all its remaining games and hence $\boldsymbol{m}=\boldsymbol{w}_{\bar{z}}+\sum_{\boldsymbol{x} \in S} \boldsymbol{g}_{\boldsymbol{x} \bar{z}}$
(2) no other team wins more than \boldsymbol{m} games
(1) for each $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}$ the $\boldsymbol{g}_{x y}$ games between them have to be assigned to either \boldsymbol{x} or \boldsymbol{y}.

Is there an assignment of remaining games to teams such that no team $x \neq \bar{z}$ wins more than $\boldsymbol{m}-\boldsymbol{w}_{\boldsymbol{x}}$ games?

Flow Network: The basic gadget

(1) s : source
(2) $t:$ sink
(3) x, y : two teams
(4) $g_{x y}$: number of games remaining between x and y.
(5) w_{x} : number of points x has.
(0) \boldsymbol{m} : maximum number of
 points x can win before \bar{z} starts loosing.

Flow Network: An Example

Can Boston win?

Team	Won	Left	NY	Bal	Tor	Bos
New York	90	11	-	1	6	4
Baltimore	88	6	1	-	1	4
Toronto	87	11	6	1	-	4
Boston	79	12	4	4	4	-

(1) $m=79+12=91$:

Boston can get at most 91 points.

Constructing Flow Network

Reduction

Notations

(1) S : set of teams,
(2) w_{x} wins for each team, and
(3) $g_{x y}$ games left between \boldsymbol{x} and \boldsymbol{y}.
(4) \boldsymbol{m} be the maximum number of wins for \bar{z},
(5) and $S^{\prime}=S \backslash\{\bar{z}\}$.

Construct the flow network G as

 follows(1) One vertex v_{x} for each team $x \in S^{\prime}$, one vertex $u_{x y}$ for each pair of teams x and y in S^{\prime}
(2) A new source vertex s and $\operatorname{sink} t$
(3) Edges $\left(s, u_{x y}\right)$ of capacity $g_{x y}$
(1) Edges $\left(v_{x}, t\right)$ of capacity equal $\boldsymbol{m}-\boldsymbol{w}_{\boldsymbol{x}}$
(5) Edges $\left(u_{x y}, v_{x}\right)$ and $\left(u_{x y}, v_{y}\right)$ of capacity ∞

Correctness of reduction

Theorem

\boldsymbol{G}^{\prime} has a maximum flow of value $\boldsymbol{g}^{*}=\sum_{x, y \in \boldsymbol{s}^{\prime}} \boldsymbol{g}_{x y}$ if and only if \bar{z} can win the most number of games (including possibly tie with other teams).

Proof of Correctness

Proof.

Existence of g^{*} flow $\Rightarrow \bar{z}$ wins pennant
(1) An integral flow saturating edges out of s ensures that each remaining game between \boldsymbol{x} and \boldsymbol{y} is played.
(2) Capacity on $\left(v_{x}, t\right)$ edges ensures that no team wins more than m games

Proof of Correctness

Proof.

Existence of g^{*} flow $\Rightarrow \bar{z}$ wins pennant
(1) An integral flow saturating edges out of s ensures that each remaining game between x and y is played.
(2) Capacity on $\left(v_{x}, t\right)$ edges ensures that no team wins more than m games
Conversely, \bar{z} wins pennant \Rightarrow flow of value g^{*}
(1) The game outcomes determines flow on edges; if x wins k of the games against y, then flow on $\left(u_{x y}, v_{x}\right)$ edge is k and on ($u_{x y}, v_{y}$) edge is $g_{x y}-k$

Proof that cannot win the pennant

(1) Suppose \bar{z} cannot win the pennant since $g^{*}<g$. How do we prove to some one compactly that \bar{z} cannot win the pennant?

Proof that cannot win the pennant

(1) Suppose \bar{z} cannot win the pennant since $g^{*}<g$. How do we prove to some one compactly that \bar{z} cannot win the pennant?
(2) Show them the min-cut in the reduction flow network!

Proof that cannot win the pennant

(1) Suppose \bar{z} cannot win the pennant since $g^{*}<g$. How do we prove to some one compactly that \bar{z} cannot win the pennant?
(2) Show them the min-cut in the reduction flow network!
(3) See Kleinberg-Tardos book for a natural interpretation of the min-cut as a certificate.

The biggest loser?

Given an input as above for the pennant competition, deciding if a team can come in the last place
(A) Can be done using the same reduction as just seen.
(B) Can not be done using the same reduction as just seen.
(C) Can be done using flows but we need lower bounds on the flow, instead of upper bounds.
(D) The problem is NP-Hard and requires exponential time.
(E) Can be solved by negating all the numbers, and using the above reduction.
(F) Can be solved efficiently only by running a reality show on the problem.

Part II

An Application of Min-Cut to Project Scheduling

Project Scheduling

Problem:
(1) n projects/tasks $1,2, \ldots, n$
(2) dependencies between projects: \boldsymbol{i} depends on j implies i cannot be done unless j is done. dependency graph is acyclic
(3) each project i has a cost/profit p_{i}
(0) $\boldsymbol{p}_{\boldsymbol{i}}<\mathbf{0}$ implies \boldsymbol{i} requires a cost of $-\boldsymbol{p}_{\boldsymbol{i}}$ units
© $\boldsymbol{p}_{\boldsymbol{i}}>\mathbf{0}$ implies that \boldsymbol{i} generates $\boldsymbol{p}_{\boldsymbol{i}}$ profit
Goal: Find projects to do so as to maximize profit.

Example Coses

Notation

For a set \boldsymbol{A} of projects:
(1) \boldsymbol{A} is a valid solution if \boldsymbol{A} is dependency closed, that is for every $\boldsymbol{i} \in \boldsymbol{A}$, all projects that \boldsymbol{i} depends on are also in \boldsymbol{A}.

Notation

For a set \boldsymbol{A} of projects:
(1) \boldsymbol{A} is a valid solution if \boldsymbol{A} is dependency closed, that is for every $i \in A$, all projects that \boldsymbol{i} depends on are also in \boldsymbol{A}.
(2) $\operatorname{profit}(A)=\sum_{i \in A} \boldsymbol{p}_{\boldsymbol{i}}$. Can be negative or positive.

Notation

For a set \boldsymbol{A} of projects:
(1) \boldsymbol{A} is a valid solution if \boldsymbol{A} is dependency closed, that is for every $i \in A$, all projects that \boldsymbol{i} depends on are also in \boldsymbol{A}.
(2) $\operatorname{profit}(A)=\sum_{i \in A} \boldsymbol{p}_{\boldsymbol{i}}$. Can be negative or positive.

Goal: find valid \boldsymbol{A} to maximize $\operatorname{profit}(A)$.

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?
Several issues:
(1) We are interested in maximizing profit but we can solve minimum cuts.
(2) We need to convert negative profits into positive capacities.
(3) Need to ensure that chosen projects is a valid set.
(0) The cut value captures the profit of the chosen set of projects.

Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization problem.
(1) projects represented as nodes in a graph
(2) if i depends on j then (i, j) is an edge
(3) add source s and sink t
(0) for each i with $p_{i}>0$ add edge (s, i) with capacity p_{i}
© for each \boldsymbol{i} with $\boldsymbol{p}_{\boldsymbol{i}}<\mathbf{0}$ add edge ($\boldsymbol{i}, \boldsymbol{t}$) with capacity $-\boldsymbol{p}_{\boldsymbol{i}}$

- for each dependency edge (i, j) put capacity ∞ (more on this later)

Reduction: Flow Network Example

Reduction contd

Algorithm:
(1) form graph as in previous slide
(2) compute s-t minimum cut (A, B)
(3) output the projects in $A-\{s\}$

Understanding the Reduction

Let $C=\sum_{i: p_{i}>0} \boldsymbol{p}_{\boldsymbol{i}}$: maximum possible profit.

Understanding the Reduction

Let $C=\sum_{i: \boldsymbol{p}_{\boldsymbol{i}}>0} \boldsymbol{p}_{\boldsymbol{i}}$: maximum possible profit.
Observation: The minimum s-t cut value is $\leq \boldsymbol{C}$. Why?

Understanding the Reduction

Let $C=\sum_{i: p_{i}>0} p_{i}$: maximum possible profit.
Observation: The minimum s-t cut value is $\leq C$. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $\boldsymbol{A}-\{s\}$ are a valid solution.

Understanding the Reduction

Let $C=\sum_{i: p_{i}>0} p_{i}$: maximum possible profit.
Observation: The minimum s-t cut value is $\leq C$. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $\boldsymbol{A}-\{s\}$ are a valid solution.

Proof.

If $\boldsymbol{A}-\{s\}$ is not a valid solution then there is a project $\boldsymbol{i} \in \boldsymbol{A}$ and a project $\boldsymbol{j} \notin \boldsymbol{A}$ such that \boldsymbol{i} depends on \boldsymbol{j}

Understanding the Reduction

Let $C=\sum_{i: p_{i}>0} p_{i}$: maximum possible profit.
Observation: The minimum s-t cut value is $\leq C$. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $\boldsymbol{A}-\{s\}$ are a valid solution.

Proof.

If $\boldsymbol{A}-\{s\}$ is not a valid solution then there is a project $\boldsymbol{i} \in \boldsymbol{A}$ and a project $\boldsymbol{j} \notin \boldsymbol{A}$ such that \boldsymbol{i} depends on \boldsymbol{j}

Since (i, j) capacity is ∞, implies (A, B) capacity is ∞, contradicting assumption.

Example

Example

Correctness of Reduction

Recall that for a set of projects $X, \operatorname{profit}(X)=\sum_{i \in X} \boldsymbol{p}_{i}$.

Correctness of Reduction

Recall that for a set of projects X, $\operatorname{profit}(X)=\sum_{i \in X} \boldsymbol{p}_{\boldsymbol{i}}$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B)=C-\operatorname{profit}(A-\{s\})$.

Correctness of Reduction

Recall that for a set of projects $X, \operatorname{profit}(X)=\sum_{i \in X} \boldsymbol{p}_{\boldsymbol{i}}$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B)=C-\operatorname{profit}(A-\{s\})$.

Proof.

Edges in (A, B) :
(1) (s, i) for $i \in B$ and $p_{i}>0$: capacity is p_{i}
(2) (i,t) for $i \in A$ and $p_{i}<0$: capacity is $-p_{i}$
(0) cannot have ∞ edges

Proof contd

For project set \boldsymbol{A} let
(1) $\operatorname{cost}(A)=\sum_{i \in A: p_{i}<0}-p_{i}$
(3) $\operatorname{benefit}(A)=\sum_{i \in A: p_{i}>0} p_{i}$
(0) $\operatorname{profit}(A)=\operatorname{benefit}(A)-\operatorname{cost}(A)$.

Proof.

Let $A^{\prime}=A \cup\{s\}$.
$c\left(A^{\prime}, B\right)=\operatorname{cost}(A)+\operatorname{benefit}(B)$
$=\operatorname{cost}(A)-\operatorname{benefit}(A)+\operatorname{benefit}(A)+\operatorname{benefit}(B)$
$=-\operatorname{profit}(A)+C$
$=C-\operatorname{profit}(A)$

Correctness of Reduction contd

We have shown that if (A, B) is an s - t cut in G with finite capacity then
(1) $A-\{s\}$ is a valid set of projects
(2) $c(A, B)=C-\operatorname{profit}(A-\{s\})$

Correctness of Reduction contd

We have shown that if (A, B) is an s - t cut in G with finite capacity then
(1) $A-\{s\}$ is a valid set of projects
(2) $c(A, B)=C-\operatorname{profit}(A-\{s\})$

Therefore a minimum s-t cut (A^{*}, B^{*}) gives a maximum profit set of projects $A^{*}-\{s\}$ since C is fixed.

Correctness of Reduction contd

We have shown that if (A, B) is an s - t cut in G with finite capacity then
(1) $A-\{s\}$ is a valid set of projects
(2) $c(A, B)=C-\operatorname{profit}(A-\{s\})$

Therefore a minimum s-t cut ($\boldsymbol{A}^{*}, B^{*}$) gives a maximum profit set of projects $A^{*}-\{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Correctness of Reduction contd

We have shown that if (A, B) is an s - t cut in G with finite capacity then
(1) $A-\{s\}$ is a valid set of projects
(2) $c(A, B)=C-\operatorname{profit}(A-\{s\})$

Therefore a minimum s-t cut ($\boldsymbol{A}^{*}, B^{*}$) gives a maximum profit set of projects $A^{*}-\{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?
Set capacity of ∞ arcs to $C+\mathbf{1}$ instead. Why does this work?

