CS 473: Algorithms, Spring 2018

More Network Flow Applications

Lecture March 15, 2018

Most slides are courtesy Prof. Chekuri

D	/	C
Ruta (טוט	C)

3

Part I

Baseball Pennant Race

Pennant Race

Pennant Race: Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	89	2	

Can Boston win the pennant?

Pennant Race: Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	89	2	

Can Boston win the pennant? No, because Boston can win at most 91 games.

Another Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	90	2	

Can Boston win the pennant?

Another Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	90	2	

Can Boston win the pennant? Not clear unless we know what the remaining games are!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	_

Can Boston win the pennant?

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	—	1	1	0
Baltimore	91	3	1	_	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	_

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

Can Boston win the pennant? Suppose Boston does

Boston wins both its games to get 92 wins

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- New York must lose both games

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Can Boston win the penant?

Team	Won	Left	NY	Bal	Tor	Bos
New York	3	6	—	2	3	1
Baltimore	5	4	2	—	1	1
Toronto	4	6	3	1	—	2
Boston	2	4	1	1	2	—

(A) Yes.(B) No.

Abstracting the Problem

Given

- A set of teams S
- **2** For each $x \in S$, the current number of wins w_x
- For any x, y ∈ S, the number of remaining games g_{xy} between x and y
- A team z
- Can z win the pennant?

Towards a Reduction

- \overline{z} can win the pennant if
 - \overline{z} wins at least m games
 - In other team wins more than m games

Towards a Reduction

 \overline{z} can win the pennant if

- $\overline{\mathbf{Z}}$ wins at least m games
 - to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $m = w_{\overline{z}} + \sum_{x \in S} g_{x\overline{z}}$
- In other team wins more than m games

Towards a Reduction

 \overline{z} can win the pennant if

- **1** \overline{z} wins at least *m* games
 - to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $m = w_{\overline{z}} + \sum_{x \in S} g_{x\overline{z}}$

In other team wins more than m games

for each x, y ∈ S the g_{xy} games between them have to be assigned to either x or y.

Is there an assignment of remaining games to teams such that no team $x \neq \overline{z}$ wins more than $m - w_x$ games?

Flow Network: The basic gadget

- 🚺 *s*: source
- 2 t: sink
- 🗿 x, y: two teams
- g_{xy}: number of games remaining between x and y.
- w_x: number of points x has.
- m: maximum number of points x can win before z starts loosing.

Flow Network: An Example Can Boston win?

Team	Won	Left	NY	Bal	Tor	Bos
New York	90	11	_	1	6	4
Baltimore	88	6	1	—	1	4
Toronto	87	11	6	1	—	4
Boston	79	12	4	4	4	_

• m = 79 + 12 = 91:

Boston can get at most **91** points.

Constructing Flow Network

Notations

- S: set of teams,
- w_x wins for each team, and
- g_{xy} games left between x and y.
- Im be the maximum number of wins for Z,

 $ond S' = S \setminus \{\overline{z}\}.$

Reduction

Construct the flow network G as follows

One vertex v_x for each team x ∈ S', one vertex u_{xy} for each pair of teams x and y in S'

A new source vertex s and sink t

- Solution Edges (s, u_{xy}) of capacity g_{xy}
- Edges (v_x, t) of capacity equal m - w_x
- Section 5 Edges (u_{xy}, v_x) and (u_{xy}, v_y) of capacity ∞

Correctness of reduction

Theorem

G' has a maximum flow of value $g^* = \sum_{x,y \in S'} g_{xy}$ if and only if \overline{z} can win the most number of games (including possibly tie with other teams).

Proof of Correctness

Proof.

Existence of g^* flow $\Rightarrow \overline{z}$ wins pennant

- An integral flow saturating edges out of s ensures that each remaining game between x and y is played.
- Capacity on (v_x, t) edges ensures that no team wins more than m games

Proof of Correctness

Proof.

Existence of g^* flow $\Rightarrow \overline{z}$ wins pennant

- An integral flow saturating edges out of s ensures that each remaining game between x and y is played.
- Q Capacity on (v_x, t) edges ensures that no team wins more than m games

Conversely, \overline{z} wins pennant \Rightarrow flow of value g^*

The game outcomes determines flow on edges; if x wins k of the games against y, then flow on (u_{xy}, v_x) edge is k and on (u_{xy}, v_y) edge is g_{xy} - k

Proof that **z** cannot win the pennant

Suppose z cannot win the pennant since g* < g. How do we prove to some one compactly that z cannot win the pennant?</p>

Proof that **z** cannot win the pennant

- Suppose z cannot win the pennant since g* < g. How do we prove to some one compactly that z cannot win the pennant?</p>
- Show them the min-cut in the reduction flow network!

Proof that **z** cannot win the pennant

- Suppose z cannot win the pennant since g* < g. How do we prove to some one compactly that z cannot win the pennant?</p>
- Show them the min-cut in the reduction flow network!
- See Kleinberg-Tardos book for a natural interpretation of the min-cut as a certificate.

The biggest loser?

Given an input as above for the pennant competition, deciding if a team can come in the last place

- (A) Can be done using the same reduction as just seen.
- (B) Can not be done using the same reduction as just seen.
- (C) Can be done using flows but we need lower bounds on the flow, instead of upper bounds.
- (D) The problem is NP-Hard and requires exponential time.
- (E) Can be solved by negating all the numbers, and using the above reduction.
- (F) Can be solved efficiently only by running a reality show on the problem.

Part II

An Application of Min-Cut to Project Scheduling

Project Scheduling

Problem:

- n projects/tasks 1, 2, ..., n
- e dependencies between projects: i depends on j implies i cannot be done unless j is done. dependency graph is acyclic
- each project *i* has a cost/profit *p_i*
 - $p_i < 0$ implies *i* requires a cost of $-p_i$ units
 - **2** $p_i > 0$ implies that *i* generates p_i profit
- Goal: Find projects to do so as to maximize profit.

Example

Notation

For a set **A** of projects:

• A is a valid solution if A is dependency closed, that is for every $i \in A$, all projects that i depends on are also in A.

Notation

For a set **A** of projects:

• A is a valid solution if A is dependency closed, that is for every $i \in A$, all projects that i depends on are also in A.

2 $profit(A) = \sum_{i \in A} p_i$. Can be negative or positive.

Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every $i \in A$, all projects that i depends on are also in A.
- **2** $profit(A) = \sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid A to maximize *profit(A)*.

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

- We are interested in maximizing profit but we can solve minimum cuts.
- We need to convert negative profits into positive capacities.
- Solution Need to ensure that chosen projects is a valid set.
- The cut value captures the profit of the chosen set of projects.

Note: We are reducing a *maximization* problem to a *minimization* problem.

- projects represented as nodes in a graph
- 2 if i depends on j then (i, j) is an edge
- add source s and sink t
- for each *i* with $p_i > 0$ add edge (s, i) with capacity p_i
- **5** for each *i* with $p_i < 0$ add edge (i, t) with capacity $-p_i$
- for each dependency edge (i, j) put capacity ∞ (more on this later)

Reduction: Flow Network Example

Ruta (UIUC)

Reduction contd

Algorithm:

- form graph as in previous slide
- 2 compute s-t minimum cut (A, B)
- **o** output the projects in $A \{s\}$

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Let $C = \sum_{i:p_i > 0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is $\leq C$. Why?

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is $\leq C$. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is $\leq C$. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Let $C = \sum_{i:p_i>0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is $\leq C$. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Since (i, j) capacity is ∞ , implies (A, B) capacity is ∞ , contradicting assumption.

Example

Example

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Edges in (A, B):

- **(**s,i) for $i \in B$ and $p_i > 0$: capacity is p_i
- **2** (i, t) for $i \in A$ and $p_i < 0$: capacity is $-p_i$
- 3 cannot have ∞ edges

Proof contd

For project set A let

- $ost(A) = \sum_{i \in A: p_i < 0} -p_i$
- benefit(A) = $\sum_{i \in A: p_i > 0} p_i$
- profit(A) = benefit(A) cost(A).

Proof.

Let $A' = A \cup \{s\}$.

c(A', B) = cost(A) + benefit(B)= cost(A) - benefit(A) + benefit(A) + benefit(B)= -profit(A) + C= C - profit(A)

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- $A \{s\}$ is a valid set of projects
- $c(A,B) = C profit(A \{s\})$

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- $A \{s\}$ is a valid set of projects
- $c(A,B) = C profit(A \{s\})$

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- $A \{s\}$ is a valid set of projects
- $c(A,B) = C profit(A \{s\})$

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

We have shown that if (A, B) is an s-t cut in G with finite capacity then

A - {s} is a valid set of projects
c(A, B) = C - profit(A - {s})
Therefore a minimum s-t cut (A*, B*) gives a maximum profit set of projects A* - {s} since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C + 1 instead. Why does this work?