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Generalizations of Flow

We have seen s-t flow. Flow problems admit several generalizations
and variations.

Demands and Supplies (we have already seen them)

Circulations

Lower bounds in addition to upper bounds

Minimum cost flows and circulations

Flows with losses

Flows with time delays

Multi-commodity flows

· · ·
Many applications, connections, algorithms.
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Part I

Circulations

Ruta (UIUC) CS473 3 Spring 2018 3 / 18



Circulations

Definition

Circulation in a network G = (V, E), is function f : E → R≥0 s.t.

1 Conservation Constraint: For each vertex v :∑
e into v

f (e) =
∑

e out of v
f (e)

2 Capacity Constraint: For each edge e, f (e) ≤ c(e)

No source or sink. f (e) = 0 for all e is a valid circulation.
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Circulation with lower bounds

Circulations are useful mainly in conjunction with lower bounds.
Given a network G = (V, E) with capacities c : E → R≥0 and lower
bounds ` : E → R≥0.

Definition

Circulation in a network G = (V, E), is function f : E → R≥0 s.t.

1 Conservation Constraint: For each vertex v :∑
e into v

f (e) =
∑

e out of v
f (e)

2 Capacity Constraint: For each edge e, f (e) ≤ c(e)
3 Lower bound Constraint: For each edge e, f (e) ≥ `(e)
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Circulation problem

Problem
Input A network G with capacity c and lower bound `

Goal Find a feasible circulation

Simply a feasibility problem.

Observation: As hard as the s-t maxflow!
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Reducing Max-flow to Circulation

Decision version of max-flow.

Problem
Input A network G with capacity c and source s and sink t

and number F .

Goal Is there an s-t flow of value at least v in G?

Given G ,s, t create network G ′ as follows:

1 set `(e) = 0 for each e in G
2 add new edge (t, s) with lower bound v and upper bound∞

Claim
There exists a flow of value v from s to t in G if and only if there
exists a feasible circulation in G ′.
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Reducing Circulation to Max-Flow

Circulation problem can be reduced to s-t flow and hence they are
polynomial-time equivalent. See Kleinberg-Tardos Chapter 7 for
details of the reduction

Important properties of circulations:

Reduction shows that one can find in O(mn) time a feasible
circulation in a network with capacities and lower bounds

If edge capacities and lower bounds are integer valued then there
is always a feasible integer-valued circulation

Hoffman’s circulation theorem is the equivalent of
maxflow-mincut theorem.

Circulation can be decomposed into at most m cycles in
O(mn) time.
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Survey Design
Application of Circulations

1 Design survey to find information about n1 products from n2

customers.

2 Can ask customer questions only about products purchased in
the past.

3 Customer can only be asked about at most c ′i products and at
least ci products.

4 For each product need to ask at east pi consumers and at most
p′i consumers.
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Reduction to Circulation

s

i j

t

ConsumersProducts

[ci , c ′i ] [pj , p′j ]

[0, 1]

1 include edge (i , j) is customer i has bought product j
2 Add edge (t, s) with lower bound 0 and upper bound∞.

1 Consumer i is asked about product j if the integral flow on edge
(i , j) is 1
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Part II

Minimum Cost Flows
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Minimum Cost Flows

1 Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F .

2 Goal: Find a minimum cost flow of value F from s to t
3 Goal: Find a minimum cost maximum s-t flow

Given flow f : E → R+, cost of flow =
∑

e∈E w(e)f (e).

Note: costs can be negative. An optimum solution may need cycles.

Much more general than the shortest path problem.
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Minimum Cost Flow: Facts

1 problem can be solved efficiently in polynomial time
1 O(nm logC log(nW )) time algorithm where C is maximum

edge capacity and W is maximum edge cost
2 O(m log n(m + n log n)) time strongly polynomial time

algorithm

2 for integer capacities there is always an optimum solution in
which flow is integral
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Min-Cost Flow: Residual Graphs

Residual graph when there are costs:

Definition
For a network G = (V ,E) and flow f , the residual graph
Gf ,w = (V ′,E ′) of G with respect to f and w is

1 V ′ = V ,

2 Forward Edges: For each edge e ∈ E with f (e) < c(e), we
add e ∈ E ′ with capacity c(e)− f (e). Cost w ′(e) = w(e).

3 Backward Edges: For each edge e = (u, v) ∈ E with
f (e) > 0, we add (v , u) ∈ E ′ with capacity f (e). Cost
w ′(e) = −w(e).
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Min-Cost Flow: Optimality Condition

Question: Suppose f is a max s-t flow in G . When is f a min-cost
a minimum cost max-flow?

If and only if there is no negative-cost cycle in Gf .

If there is a negatice cost cycle we can augment along the cycle
and reduce the cost of f (note that value of f does not change)

Suppose f ′ is another maxflow of less cost. One can show that
f ′ − f is a circulation in Gf (since both are maxflows) which
means that f ′ − f can be decomposed into cycles. Since f ′ has
less cost than f there must be a negative cost cycle.
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Min-Cost Flwo: Cycle-canceling algorithm

Goal: Given G with integer capacities, non-negative weights, find
s-t maxflow of with minimum cost.

Cycle-Canceling-Alg
Compute a maxflow f in G (ignoring costs)

Gf ,w is residual graph of G with respect to f
while there is a negative weight cycle C in Gf ,w do

let C be a negative weight cycle in Gf ,w
Augment one unit of flow along C and update f
Construct new residual graph Gf ,w.

Output f

Like Ford-Fulkerson the run-time is pseudo-polynomial in costs. Can
be implemented to run in O(m2nCW ) time where C = maxe c(e)
and W = maxe |w(e)|.
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Min-Cost Flow: Successive Shortest Path Alg

Goal: Given G with integer capacities, non-negative weights, and
integer k , find s-t flow of value k with minimum cost.

Successive-Shortest-Path-Alg
for every edge e, f (e) = 0
Gf ,w is residual graph of G with respect to f
while v(f ) < k and Gf ,w has a simple s-t path do

let P be a shortest s-t path in Gf ,w
Augment one unit of flow along P and update f
Construct new residual graph Gf ,w.

Algorithm gives optimum solution. Shows existence of integral
optimum solution for integer capacities. Run time is O(mk logm),
and in the worst-case, O(mC logm).
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Maximum Profit Flow?

Can we find find a maxflow of maximum profit?
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