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A Factory Example

Your factory can produce Laptop and iPhone using Copper.

© One ton of Copper — one Laptop

@ One ton of Copper — one iPhone

© We have 200 tons of Copper.

@ Laptop can be sold for $1 and iPhone for $6.
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A Factory Example

Your factory can produce Laptop and iPhone using Copper.

© One ton of Copper — one Laptop

@ One ton of Copper — one iPhone

© We have 200 tons of Copper.

@ Laptop can be sold for $1 and iPhone for $6.

How many units of Laptop and iPhone should your factory
manufacture to maximize profit?
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A Factory Example

Your factory can produce Laptop and iPhone using Copper.

© One ton of Copper — one Laptop

@ One ton of Copper — one iPhone

© We have 200 tons of Copper.

@ Laptop can be sold for $1 and iPhone for $6.

How many units of Laptop and iPhone should your factory
manufacture to maximize profit?

Solution: manufacture only iPhone
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A Factory Example

Your factory can produce Laptop and iPhone using resources
C,B,A

@ One unit of A and C each — One Laptop

@ One unit of B and C each — One iPhone
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@ Product Laptop can be sold for $1 and product iPhone for $6.
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A Factory Example

Your factory can produce Laptop and iPhone using resources
C,B,A.
@ One unit of A and C each — One Laptop
@ One unit of B and C each — One iPhone
© We have 200 units of A, 300 units of B, and 400 units of C.
@ Product Laptop can be sold for $1 and product iPhone for $6.

How many units of Laptop and iPhone should your factory
manufacture to maximize profit?

Solution:
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A Factory Example

Your factory can produce Laptop and iPhone using resources
C,B,A.
@ One unit of A and C each — One Laptop
@ One unit of B and C each — One iPhone
© We have 200 units of A, 300 units of B, and 400 units of C.
@ Product Laptop can be sold for $1 and product iPhone for $6.

How many units of Laptop and iPhone should your factory
manufacture to maximize profit?

Solution: Formulate as a linear program.
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A Factory Example

Can produce Laptop and iPhone,
using resources A, B, C.

Q@ A, C — Laptop
Q@ B, C — iPhone

@ Have A: 200, B: 300, and
C: 400.

@ Price of L: $1, and iP: $6.

How many units to manufacture
to max profit?
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Q@ A, C — Laptop
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@ Have A: 200, B: 300, and
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@ Price of L: $1, and iP: $6.

How many units to manufacture
to max profit?

Ruta (UIUC) CS473 7 Spring 2018 7 / 50



A Factory Example

Can produce Laptop and iPhone,
using resources A, B, C.

Q@ A, C — Laptop
@ B, C — iPhone

@ Have A: 200, B: 300, and
C: 400.

@ Price of L: $1, and iP: $6.

How many units to manufacture
to max profit?
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Suppose x; units of Laptop and
Xo units of iPhone.

max xj; + 6x;
st. x3 <200 (A)
x; < 300 (B)
x1 +x; < 400 (C)
x1 >0
x>0
7 Spring 2018 7 / 50



Linear Programming Formulation

Let us produce x; units of Laptop and x; units of iPhone. Our profit
can be computed by solving

maximize x1 + 6x;
subject to x3 <200 x; <300 x; + x; < 400
X1, X2 Z 0
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Linear Programming Formulation

Let us produce x; units of Laptop and x; units of iPhone. Our profit
can be computed by solving

maximize X1 + 6x
subject to x3 <200 x; <300 x; + x; < 400
X1, X2 Z 0

What is the solution?
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Maximum Flow in Network
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Maximum Flow in Network

9 Need to compute values
fo1, fs2y - . sy . .« f5e, fge such that
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Maximum Flow in Network

9 Need to compute values
fo1, fs2y - . sy . .« f5e, fge such that

f1 <15 f2<5 £3<10
fia <30 <4 hH<8
f2<4 HR<15 £<9
fin <6 fo; <10 f54 <15
fsr <10 fo5 <15 f5 < 10

and
fs1+ f1 = ha fso + 3o = H1 + b5 fi3 = R+ f35 + f36
fia+Ffa="fio+far bhs+ s+ fos =fa+ fse e = fos5 + for
f1>0 fo>0 f3>0 -+ £f;2>0 £f2>0 fo6e>0
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Maximum Flow in Network

9 Need to compute values
fo1, fs2y - . sy . .« f5e, fge such that

f1 <15 f2<5 £3<10
fia <30 <4 hH<8
f2<4 HR<15 £<9
fin <6 fo; <10 f54 <15
fsr <10 fo5 <15 f5 < 10

and
fs1+ f1 = ha fso + 3o = H1 + b5 fi3 = R+ f35 + f36
fia+Ffa="fio+far bhs+ s+ fos =fa+ fse e = fos5 + for
f1>0 fo>0 f3>0 -+ £f;2>0 £f2>0 fo6e>0

maximize: fg1 + foo + fi3.
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Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c. on edge
e € E, we have variables f, indicating flow on edge e

Maximize Z f.

e out of s
subject to  f. < ce for each e € E
Z fo — Z fo=0 VveV\{st}
e out of v e into v
fo.>0 for each e € E.
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Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c. on edge
e € E, we have variables f, indicating flow on edge e

Maximize Z f.

e out of s
subject to  f. < ce for each e € E
Z fo — Z fo=0 VveV\{st}
e out of v e into v
fo.>0 for each e € E.

Number of variables: m, one for each edge.
Number of constraints: m+n — 2+ m.
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Minimum Cost Flow with Lower Bounds

.. as a Linear Program

For a general flow network G = (V/, E) with capacities ce, lower
bounds £, and costs we, we have variables f, indicating flow on
edge e. Suppose we want a min-cost flow of value at least F.

subject to Z fo > F

e out of s

fo. <ce fo > 4L, for each e € E
Z fo — Z fo=0 foreachv € V — {s,t}

e out of v e into v

fe>0 for each e € E.
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Minimum Cost Flow with Lower Bounds

.. as a Linear Program

For a general flow network G = (V/, E) with capacities ce, lower
bounds £, and costs we, we have variables f, indicating flow on
edge e. Suppose we want a min-cost flow of value at least F.
Minimize " wef.
ecE
subject to Z fo > F

e out of s

fo. <ce fo > 4, for each e € E

Z fo — Z fo=0 foreachv € V — {s,t}

e out of v e into v

fe>0 for each e € E.

Number of variables: m, one for each edge
Number of constraints: 1+ m+m+n—24+m=3m+n—1.
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Linear Programs

Find a vector x € RY that

.. . d
maximize/minimize }_._; CjX;

subject to Zj‘.f:l ajxi < b; fori=1...p
Z;'I=1aijxj =b; fori=p+1...q

Z,ilainjzb; fori=q+1...n
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Linear Programs

Problem
Find a vector x € RY that

.. . d
maximize/minimize }_._; CjX;

subject to Zj‘.f:l ajxi < b; fori=1...p

Z;'I=1aijxj=bi fori=p+1...q
Zf':laijszbi fori=q+1...n

Input is matrix A = (a;;) € R" 9, column vector b = (b;) € R",
and row vector ¢ = (¢;) € R?

Ruta (UIUC) Cs473 12 Spring 2018 12 / 50



Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

_ d
maximize Z{.fl Cj Xj
subject to > . ; a;x; < by fori=1...n
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Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

_ d
maximize Z{.fl Cj Xj
subject to > . ; a;x; < by fori=1...n

4

Conversion to Canonical Form

O Replace ) ; a;x; = b; by

Za;ij S b,' and — Za;ij S —b,'
J J

© Replace ) ; ajx; > b by — > ajjx; < —b;
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Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize C - X
subjectto Ax < b

where A = (a;;) € R™9, column vector b = (b;) € R”, row vector
c = (¢j) € RY, and column vector x = (x;) € R?
© Number of variable is d

@ Number of constraints is n
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Other Standard Forms for Linear Programs

maximize C - X minimize € - x
subject to Ax < b subjectto Ax > b
x>0 x>0

minimize c - x
subjectto Ax = b
x>0
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Linear Programming: A History

@ First formal application to problems in economics by Leonid
Kantorovich in the 1930s

@ However, work was ignored behind the Iron Curtain and
unknown in the West

Ruta (UIUC) Cs473 16 Spring 2018 16 / 50



Linear Programming: A History

@ First formal application to problems in economics by Leonid
Kantorovich in the 1930s

@ However, work was ignored behind the Iron Curtain and
unknown in the West

© Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

Ruta (UIUC) Cs473 16 Spring 2018 16 / 50



Linear Programming: A History

@ First formal application to problems in economics by Leonid
Kantorovich in the 1930s

@ However, work was ignored behind the Iron Curtain and
unknown in the West

© Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

@ First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947

Ruta (UIUC) Cs473 16 Spring 2018 16 / 50



Linear Programming: A History

© First formal application to problems in economics by Leonid
Kantorovich in the 1930s
@ However, work was ignored behind the Iron Curtain and
unknown in the West

© Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

@ First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947
@ Kantorovich and Koopmans receive Nobel Prize for economics in
1975 ; Dantzig, however, was ignored
@ Koopmans contemplated refusing the Nobel Prize to protest
Dantzig's exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
“a means for apologists of capitalism”
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Back to the Factory example

Produce x; units of product 1 and x» units of product 2. Our profit
can be computed by solving

maximize x1 + 6x;
subject to x3 <200 x; <300 x; + x; < 400
X1, X2 Z 0
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Back to the Factory example

Produce x; units of product 1 and x» units of product 2. Our profit
can be computed by solving

maximize X1 + 6x
subject to x3 <200 x; <300 x; + x; < 400
X1, X2 Z 0

What is the solution?
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Solving the Factory Example

@ Feasible values of x; and x, are shaded
region.

X1
maximize X1 + 6x2
subject to x1 <200 x2 <300 x3 4+ x2» < 400
X14 X2 Z 0
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Solving the Factory Example

@ Feasible values of x; and x, are shaded
——————— region.
@ Objective (Cost) function is a direction —
the line represents all points with same
value of the function

X1
maximize x1 + 6x7
subject to x1 <200 x2 <300 x3 4+ x2» < 400
X14 X2 Z 0
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Solving the Factory Example

@ Feasible values of x; and x, are shaded
——————— region.

@ Objective (Cost) function is a direction —
the line represents all points with same
value of the function; moving the line until
it just leaves the feasible region, gives
optimal values.

X1
maximize x1 + 6x7
subject to x1 <200 x2 <300 x3 4+ x2» < 400
X14 X2 Z 0
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Linear Programming in 2-d

@ Each constraint a half plane

@ Feasible region is intersection of finitely many half planes — it
forms a polygon.

© For a fixed value of objective function, we get a line. Parallel
lines correspond to different values for objective function.

@ Optimum achieved when objective function line just leaves the
feasible region
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An Example in 3-d

max x1 + 6xo + 1323
z1 < 200
z9 < 300
x4+ xo + x3 < 400
9 + 33 < 600
1 >0
x9 >0
z3 >0

CNONCNCHCNCNC)

Polytope

Figure from Dasgupta etal book.
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Part 1l

Simple Algorithm
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Factory Example: Alternate View

Original Problem

Recall we have,

maximize x1 + 6x;
subject to x3 < 200 x; < 300 x; + x» < 400
X149 X2 Z 0
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Factory Example: Alternate View

Original Problem

Recall we have,

maximize x1 + 6x;
subject to x3 <200 x; <300 x; + x; < 400
X1y X2 Z 0

Transformation

Consider new variable z; and z, such that z; = x3 + 6x;, and
Zy = Xp. Then xy = z; — 62. In terms of the new variables we have

maximize V4]
subjectto zz — 62 <200 2z <300 z — 52 <400
721—62>0 22>0
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Transformed Picture

Zy

A

Feasible region rotated, and optimal value at the right-most point on

polygon
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Observations about the Transformation

© Linear program can always be transformed to get a linear
program where the optimal value is achieved at the point in the
feasible region with highest x-coordinate

@ Optimum value attained at a vertex of the polygon

© Since feasible region is convex, and objective function linear,
every local optimum is a global optimum
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A Simple Algorithm in 2-d

@ optimum solution is at a vertex of the feasible region

@ a vertex is defined by the intersection of two lines (constraints)
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A Simple Algorithm in 2-d

@ optimum solution is at a vertex of the feasible region

@ a vertex is defined by the intersection of two lines (constraints)

Algorithm:
@ find all intersections between the n lines — at most n? points

@ for each intersection point p = (p1, p2)

@ check if p is in feasible region (how?)
@ if p is feasible evaluate objective function at p:

val(p) = cip1 + c2p2
© Output the feasible point with the largest value
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A Simple Algorithm in 2-d

@ optimum solution is at a vertex of the feasible region

@ a vertex is defined by the intersection of two lines (constraints)

Algorithm:
@ find all intersections between the n lines — at most n? points

@ for each intersection point p = (p1, p2)

@ check if p is in feasible region (how?)
@ if p is feasible evaluate objective function at p:

val(p) = cip1 + c2p2
© Output the feasible point with the largest value

Running time: O(n3).
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Geometry in d-dimentsion

.. d
maximize } :_; CjX;
, d
subject to 3 ;_; ajix; < b;
fori=1...n

Q: The set of points defined by a linear constraint

d
{X - Rd | Za,'ij S b,} is,

j=1

@ convex
@ non-convex
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Geometry in d-dimentsion

.. d
maximize } :_; CjX;
, d
subject to 3 ;_; ajix; < b;
fori=1...n

Q: The set of points defined by a linear constraint

d
{X - Rd | Za,'ij S b,} is,

j=1

@ convex
@ non-convex

This is also called a halfspace.
Ruta (UIUC) CS473 26 Spring 2018 26 / 50



Geometry in d-dimentsion

.. d
maximize } :_; CjX;
, d
subject to 3 ;_; ajix; < b;
fori=1...n

Q: Intersection of a finitely many convex sets is,
Q convex

@ non-convex
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Geometry in d-dimentsion

.. d
maximize } :_; CjX;
, d
subject to 3 ;_; ajix; < b;
fori=1...n

Q: Intersection of a finitely many convex sets is,
Q convex

@ non-convex

Thus feasible set, {x | Z}jzl ajxj < bj for i =1...n}, is convex.
Defines a polytope.
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Geometry in d-dimentsion

*3

. g s
maximize Z‘Q:l CjXj @ | ®
subject to ijl ajxj < b; P :

b

fori=1...n

Caratheodory Theorem. Every point x in a d-dimensional
polytope can be written as a convex combination of (d + 1) vertices.
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Geometry in d-dimentsion

. d
maximize Z{fl CjXj §
subject to > ., ajix; < b;
fori=1...n

A

b

Caratheodory Theorem. Every point x in a d-dimensional
polytope can be written as a convex combination of (d + 1) vertices.

Q: If x is a convex combination of vertices vq,. .., Vv, then for a
constant vector ¢ which of the following holds

0 (c-x) > max(c- v)
Q (c-x) <maxt (c-v)
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Geometry in d-dimentsion

. d
maximize Z{fl CjXj §
subject to > ., ajix; < b;
fori=1...n

A

Caratheodory Theorem. Every point x in a d-dimensional

polytope can be written as a convex combination of (d + 1) vertices.

Q: If x is a convex combination of vertices vq,. .., Vv, then for a
constant vector ¢ which of the following holds

0 (c-x) > max(c- v)
Q (c-x) <maxt (c-v)

There exists a vertex solution.
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Geometry in d-dimentsion

.. d
maximize ZJ _1 GiXj §
subject to Z 1 aiix; < b; P
for i=1. *

Caratheodory Theorem. Every point x in a d-dimensional
polytope can be written as a convex combination of (d + 1) vertices.

If x is a convex combination of vertices vy, ..., v, then
@ min’_,(c-v;) < (c-x) < maxk(c- v,)

There exists a vertex solution.
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*3
N o
maximize Z‘Q:l CjXj @. £
subject to ijl ajxj < b; P :

b

fori=1...n

@ Each linear constraint defines a halfspace — Convex set.
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- d <
maximize ) ._; GiX; .

(€3]

subject to Z}!:l ajx; < b;
fori=1...n

A

b

X1

@ Each linear constraint defines a halfspace — Convex set.

@ Feasible region is an intersection of halfspaces

Ruta (UIUC) CS473 30

— Convex polytope.

Spring 2018 30 / 50



.. d

maximize Z{.!zl i Xj

subject to > ., ajix; < b;
fori=1...n

@ Each linear constraint defines a halfspace — Convex set.

@ Feasible region is an intersection of halfspaces — Convex polytope.

© Optimal value attained at a vertex of the polyhedron.
e Using the Caratheodory Theorem. (Or the transformation)
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.. d

maximize Z{.!zl i Xj

subject to > ., ajix; < b;
fori=1...n

@ Each linear constraint defines a halfspace — Convex set.
@ Feasible region is an intersection of halfspaces — Convex polytope.
© Optimal value attained at a vertex of the polyhedron.

o Using the Caratheodory Theorem. (Or the transformation)
Q Tight inequality Zle ajjxj = b; defines hyperplane of (d — 1) dim.
© A vertex is defined by intersection of d hyperplanes.

o Solution of Ax = b, where Ais d x d.
e A has non-zero determinant — linear independence.
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Simple Algorithm in d Dimensions

Real problem: d-dimensions, n-constraints
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Simple Algorithm in d Dimensions

Real problem: d-dimensions, n-constraints
@ optimum solution is at a vertex of the feasible region
@ a vertex is defined by the intersection of d hyperplanes

© number of vertices can be
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Simple Algorithm in d Dimensions

Real problem: d-dimensions, n-constraints
@ optimum solution is at a vertex of the feasible region
@ a vertex is defined by the intersection of d hyperplanes
@ number of vertices can be Q(n9)

Running time: O(dn?*1) which is not polynomial since problem size
is at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in R9?
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Simple Algorithm in d Dimensions

Real problem: d-dimensions, n-constraints
@ optimum solution is at a vertex of the feasible region
@ a vertex is defined by the intersection of d hyperplanes
@ number of vertices can be Q(n9)

Running time: O(dn?*1) which is not polynomial since problem size
is at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in R9? Using
Gau55|an elimination to solve Ax = b where A is a d X d matrix
and bis a d x 1 matrix.
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Simplex Algorithm

Simplex: Vertex hoping algorithm
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

@ Which neighbor to move to?
@ When to stop?
@ How much time does it take?
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Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,Xq4) and
optimal is x* = (x{,...,x}), then c- x* > c - X.
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Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,Xq4) and
optimal is x* = (x{,...,x}), then c- x* > c - X.

How does (c - x) change as we move from X to x* on the line
joining the two?

Strictly increases!

o d = x* — X is the direction from X to x*.

@ x = X+ 6d. As § goes from 0 to 1, x moves from X to x*.

Ruta (UIUC) Cs473 EE Spring 2018 33/ 50



Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,Xq4) and
optimal is x* = (x{,...,x}), then c- x* > c - X.

How does (c - x) change as we move from X to x* on the line
joining the two?
Strictly increases!

o d = x* — X is the direction from X to x*.
@ x = X+ 6d. As § goes from 0 to 1, x moves from X to x*.
o (c-d)=(c-x*)—(c-x)>0.
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Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,Xq4) and
optimal is x* = (x{,...,x}), then c- x* > c - X.

How does (c - x) change as we move from X to x* on the line
joining the two?

Strictly increases!

o d = x* — X is the direction from X to x*.
@ x = X+ 6d. As § goes from 0 to 1, x moves from X to x*.
o (c-d)y=(c-x*)—(c-x)>0.

@ c-x=c-X+d(c-d). Strictly increasing with !

@ Due to convexity, all of these are feasible points.
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Cone

Given a set of vectors D = {dh, ..., dk}, the cone spanned by
them is just their positive linear combinations, i.e.,

k
cone(D) = {d | d =) _Aid;, where \; > 0,Vi}

i=1
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Cone (Contd.)

Lemma

If d € cone(D) and (c - d) > 0, then there exists d; such that
(C ° d,) > 0.

Proof.

To the contrary suppose (c - d;) < 0, Vi < k.
Since d is a positive linear combination of d;’s,

(c-d) = (c-Xi,Nid))
f:l}‘i(c'di)

IA I
SMA

A contradiction! ]

v
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Improving Direction Implies Improving Neighbor

Let z, ...,z be the neighboring vertices of X. And let d; = z; — X
be the direction from X to z;.

Z1

Any feasible direction of
movement d from X is in the

cone({di,...,dc}).

ds
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Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,Xq4) and
optimal is x* = (x{,...,x}), then c- x* > c - X.

o d = x* — X is the direction from X to x*.

o (c-d)=(c-x*)—(c-%)>0.
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Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,Xq4) and
optimal is x* = (x{,...,x}), then c- x* > c - X.

d = x* — X is the direction from X to x*.
(c-d)=(c-x*)—(c-%x)>0.

Let d; be the direction towards neighbor z;.

d e Cone({dl, cee dk}) = 3dd;, (C . d,) > 0.
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Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,Xq4) and
optimal is x* = (x{,...,x}), then c- x* > c - X.

d = x* — X is the direction from X to x*.
(c-d)=(c-x*)—(c-%x)>0.

Let d; be the direction towards neighbor z;.

d e Cone({dl, cee dk}) = 3dd;, (C . d,) > 0.

If vertex X is not optimal then it has a neighbor where the objective
value (c - x) improves.
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How Many Neighbors a Vertex Has?

Geometric view...

A e R™ (n>d), b € R" the
constraints are: Ax < b

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.
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Geometric view...
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Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

@ r linearly independent
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How Many Neighbors a Vertex Has?

Geometric view...

A e R™ (n>d), b € R" the
constraints are: Ax < b

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

@ r linearly independent
hyperplanes forms d — r
dimensional face.

@ Vertices being of 0D, d L.I.
hyperplanes form a vertex.
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How Many Neighbors a Vertex Has?

Geometric view...

A e R™ (n>d), b € R" the
constraints are: Ax < b

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

In 3-dimension (d = 3)

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

@ r linearly independent
hyperplanes forms d — r
dimensional face.

@ Vertices being of 0D, d L.I.

hyperp|a nes form a vertex. image source: webpage of Prof. Forbes W. Lewis
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How Many Neighbors a Vertex Has?

Geometry view...

One neighbor per tight hyperplane. Therefore typically d.

@ Suppose x’ is a neighbor of
X, then on the edge joining is X3
defined by (d — 1) p
hyperplanes. @

=)

@ hx and x’ also shares these
d — 1 hyperplanes

@ In addition one more
hyperplane, say (Ax); = b;,
is tight at X. “Relaxing” this
at X leads to x’.
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

@ Which neighbor to move to? One where objective value
increases.

Ruta (UIUC) Cs473 41 Spring 2018 41 / 50



Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

@ Which neighbor to move to? One where objective value
increases.

@ When to stop? When no neighbor with better objective value.

Ruta (UIUC) Cs473 41 Spring 2018 41 / 50



Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

@ Which neighbor to move to? One where objective value
increases.

@ When to stop? When no neighbor with better objective value.

@ How much time does it take? At most d neighbors to consider
in each step.
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Simplex in 2-d

Simplex Algorithm

© Start from some vertex of the feasible polygon.

© Compare value of objective function at current vertex with the
value at 2 “neighboring” vertices of polygon.

© If neighboring vertex improves objective function, move to this
vertex, and repeat step 2.

@ If no improving neighbor (local optimum), then stop.
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Simplex in Higher Dimensions

Simplex Algorithm

© Start at a vertex of the polytope.
@ Compare value of objective function at each of the d
“neighbors” .

© Move to neighbor that improves objective function, and repeat
step 2.

Q If no improving neighbor, then stop.
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Simplex in Higher Dimensions

Simplex Algorithm

© Start at a vertex of the polytope.
@ Compare value of objective function at each of the d
“neighbors” .

© Move to neighbor that improves objective function, and repeat
step 2.

Q If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.
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Solving Linear Programming in Practice

© Naive implementation of Simplex algorithm can be very
inefficient
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Solving Linear Programming in Practice

© Naive implementation of Simplex algorithm can be very
inefficient — Exponential number of steps!
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Solving Linear Programming in Practice

© Naive implementation of Simplex algorithm can be very
inefficient

@ Choosing which neighbor to move to can significantly affect
running time

@ Very efficient Simplex-based algorithms exist

@ Simplex algorithm takes exponential time in the worst case but
works extremely well in practice with many improvements over
the years

@ Non Simplex based methods like interior point methods work
well for large problems.
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Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?
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Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

@ major theoretical advance

@ highly impractical algorithm, not used at all in practice
© routinely used in theoretical proofs.
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Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

@ major theoretical advance
@ highly impractical algorithm, not used at all in practice
© routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

@ very practical for some large problems and beats simplex
@ also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.
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© The linear program could be infeasible: No points satisfy the
constraints.

© The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.

© More than d hyperplanes could be tight at a vertex, forming
more than d neighbors.
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Infeasibility: Example

maximize x1 + 6x;
subjectto x3 <2 <1 x34+x >4
X1y X2 Z 0

Infeasibility has to do only with constraints.
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Infeasibility: Example

maximize x1 + 6x;
subjectto x3 <2 <1 x34+x >4
X1y X2 Z 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex.
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Infeasibility: Example

maximize x1 + 6x;
subjectto x3 <2 <1 x34+x >4
X1y X2 Z 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?
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Unboundedness: Example

maximize Xj
X1 + X2
X149 X2

AVARAV]
o

Unboundedness depends on both constraints and the objective
function.
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Unboundedness: Example

maximize Xj

X1+ x >
X1, X2 2 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then Simplex
detects it.
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Degeneracy and Cycling

More than d inequalities tight at a vertex.

max zp + 6z2 + 1323
1 < 200
9 < 300
r1 + x9 + x3 < 400
o + 3x3 < 600
x>0
a0 >0
x3 >0

CECNCECECECKC
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Degeneracy and Cycling

More than d inequalities tight at a vertex.

max zp + 6z2 + 1323
1 < 200
9 < 300
r1 + x9 + x3 < 400
o + 3x3 < 600
x>0
a0 >0
x3 >0

CECNCECECECKC

Depending on how Simplex is implemented, it may cycle at this
vertex.

We will see how in the next lecture.
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