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Outline

Simplex: Intuition and Implementation Details

Computing starting vertex: equivalent to solving an LP!

Infeasibility, Unboundedness, and Degeneracy.

Duality: Bounding the objective value through weak-duality

Strong Duality, Cone view.
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Part I

Recall
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Feasible Region and Convexity

Canonical Form
Given A ∈ Rn×d , b ∈ Rn×1 and c ∈ R1×d , find x ∈ Rd×1

max : c · x
s.t. Ax ≤ b

1 Each linear constraint defines a halfspace, a convex set.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Optimal value attained at a vertex of the polyhedron.
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?
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Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ and optimal is x∗, then
c · x∗ > c · x̂ .

How does (c · x) change as we move from x̂ to x∗ on the line
joining the two?

Strictly increases!
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Cone

Definition
Given a set of vectors D = {d1, . . . , dk}, the cone spanned by
them is just their positive linear combinations, i.e.,

cone(D) = {d | d =
k∑

i=1

λidi , where λi ≥ 0, ∀i}
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Cone at a Vertex

Let z1, . . . , zk be the neighboring vertices of x̂ . And let di = zi − x̂
be the direction from x̂ to zi .

Lemma
Any feasible direction of
movement d from x̂ is in the
cone({d1, . . . , dk}).
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Improving Direction Implies Improving Neighbor

Lemma
If d ∈ cone({d1, . . . , dk}) and (c · d) > 0, then there exists di
such that (c · di) > 0.

Proof.
To the contrary suppose (c · di) ≤ 0, ∀i ≤ k .
Since d is a positive linear combination of di ’s,

(c · d) = (c ·
∑k

i=1 λidi)

=
∑k

i=1 λi(c · di)
≤ 0 A contradiction!

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.
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How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-D face. formed by
d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 2-dimension (d = 2)

x2

x1

300

200
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How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-dimensional face.
formed by d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 3-dimension (d = 3)

①

②

③

ෝ࢞

࢞′

image source: webpage of Prof. Forbes W. Lewis
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How Many Neighbors a Vertex Has?
Geometry view...

One neighbor per tight hyperplane. Therefore typically d .

Suppose x ′ is a neighbor of
x̂ , then on the edge joining
the two d − 1 constraints are
tight.

These d − 1 are also tight at
both x̂ and x ′.
One more constraints, say i ,
is tight at x̂ . “Relaxing” i at
x̂ leads to x ′.

①

②

③

ෝ࢞

࢞′

x

④
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.
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Simplex in Higher Dimensions

Simplex Algorithm
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.
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Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient – Exponential number of steps!
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Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient

1 Choosing which neighbor to move to can significantly affect
running time

2 Very efficient Simplex-based algorithms exist
3 Simplex algorithm takes exponential time in the worst case but

works extremely well in practice with many improvements over
the years

2 Non Simplex based methods like interior point methods work
well for large problems.
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Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

1 major theoretical advance

2 highly impractical algorithm, not used at all in practice

3 routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

1 very practical for some large problems and beats simplex

2 also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.
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Issues

1 Starting vertex

2 The linear program could be infeasible: No point satisfy the
constraints.

3 The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.

4 More than d hyperplanes could be tight at a vertex, forming
more than d neighbors.
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Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial!

x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!
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Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then the pivoting
step in the simplex will detect it.
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Degeneracy and Cycling

More than d constraints are tight at vertex x̂ . Say d + 1.

Suppose, we pick first d to form Â such that Âx̂ = b̂, and compute
directions d1, . . . , dd .

Then NextVertex(x̂, di ) will encounter (d + 1)th constraint tight at
x̂ and return the same vertex. Hence we are back to x̂ !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bi s.
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Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 5
2x1− 4x2 ≤ 10
x1+ x2 ≤ 7

x1 ≤ 5

1 (0, 1) satisfies all the constraints and gives value 2 for the
objective function.

2 Thus, optimal value σ∗ is at least 4.

3 (2, 0) also feasible, and gives a better bound of 8.

4 How good is 8 when compared with σ∗?
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Obtaining Upper Bounds

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 5
2x1− 4x2 ≤ 10
x1+ x2 ≤ 7

x1 ≤ 5

1 Let us multiply the first constraint by 2 and the and add it to
second constraint

2( x1+ 3x2 ) ≤ 2(5)
+1( 2x1− 4x2 ) ≤ 1(10)

4x1+ 2x2 ≤ 20

2 Thus, 20 is an upper bound on the optimum value!
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Generalizing . . .

1 Multiply first equation by y1, second by y2, third by y3 and
fourth by y4 (y1, y2, y3, y4 ≥ 0) and add

y1( x1+ 3x2 ) ≤ y1(5)
+y2( 2x1− 4x2 ) ≤ y2(10)
+y3( x1+ x2 ) ≤ y3(7)
+y4( x1 ) ≤ y4(5)
(y1 + 2y2 + y3 + y4)x1 + (3y1 − 4y2 + y3)x2 ≤ . . .

2 5y1 + 10y2 + 7y3 + 5y4 is an upper bound, provided coefficients
of xi are same as in the objective function (4x1 + 2x2),

y1 + 2y2 + y3 + y4 = 4 3y1 − 4y2 + y3 = 2

3 Subject to these constrains, the best upper bound is
min : 5y1 + 10y2 + 7y3 + 5y4!
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Dual LP: Example

Thus, the optimum value of program

maximize 4x1 + 2x2

subject to x1 + 3x2 ≤ 5
2x1 − 4x2 ≤ 10

x1 + x2 ≤ 7
x1 ≤ 5

is upper bounded by the optimal value of the program

minimize 5y1 + 10y2 + 7y3 + 5y4

subject to y1 + 2y2 + y3 + y4 = 4
3y1 − 4y2 + y3 = 2

y1, y2 ≥ 0
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Dual Linear Program

Given a linear program Π in canonical form

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n

the dual Dual(Π) is given by

minimize
∑n

i=1 biyi
subject to

∑n
i=1 yiaij = cj j = 1, 2, . . . d

yi ≥ 0 i = 1, 2, . . . n

Proposition

Dual(Dual(Π)) is equivalent to Π
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Dual Linear Program
Succinct representation..

Given a A ∈ Rn×d , b ∈ Rn and c ∈ Rd , linear program Π

maximize c · x
subject to Ax ≤ b

the dual Dual(Π) is given by

minimize y · b
subject to yA = c

y ≥ 0

Proposition

Dual(Dual(Π)) is equivalent to Π
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Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution to
Dual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced from
duality.
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Weak Duality

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

We already saw the proof by the way we derived it but we will do it
again formally.

Proof.
Since y ′ is feasible in Dual(Π): y ′A = c

Therefore c · x ′ = y ′Ax ′

Since x ′ is feasible in Π, Ax ′ ≤ b and hence,

c · x ′ = y ′Ax ′ ≤ y ′ · b
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Strong Duality and Complementary Slackness

maximize : c · x
subject to Ax ≤ b

Dual−−→
minimize : y · b
subject to yA = c

y ≥ 0

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

Geoemetric Interpretation: c is in the cone of the normal vectors
of the tight hyperplanes at x .
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Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

Theorem
(x∗, y∗) satisfies complementary Slackness if and only if strong
duality holds, i.e., c · x∗ = y∗ · b.

Proof.

(⇒)

c · x∗ = (y∗A) · x∗
= y∗ · (Ax∗)

=
∑n

i=1 y∗i (Ax∗)i
=

∑
i :yi>0 y∗i (Ax∗)i

=
∑

i y
∗
i bi = y∗ · b

Ruta (UIUC) CS473 33 Spring 2018 33 / 45



Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

Theorem
(x∗, y∗) satisfies complementary Slackness if and only if strong
duality holds, i.e., c · x∗ = y∗ · b.

Proof.

(⇒)

c · x∗ = (y∗A) · x∗
= y∗ · (Ax∗)
=

∑n
i=1 y∗i (Ax∗)i

=
∑

i :yi>0 y∗i (Ax∗)i

=
∑

i y
∗
i bi = y∗ · b

Ruta (UIUC) CS473 33 Spring 2018 33 / 45



Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

Theorem
(x∗, y∗) satisfies complementary Slackness if and only if strong
duality holds, i.e., c · x∗ = y∗ · b.

Proof.

(⇒)

c · x∗ = (y∗A) · x∗
= y∗ · (Ax∗)
=

∑n
i=1 y∗i (Ax∗)i

=
∑

i :yi>0 y∗i (Ax∗)i

=
∑

i y
∗
i bi = y∗ · b

Ruta (UIUC) CS473 33 Spring 2018 33 / 45



Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

Theorem
(x∗, y∗) satisfies complementary Slackness if and only if strong
duality holds, i.e., c · x∗ = y∗ · b.

Proof.
(⇐)

Exercise
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Duality for another canonical form

maximize 4x1+ x2+ 3x3

subject to x1+ 4x2 ≤ 2
2x1− x2+ x3 ≤ 4

x1, x2, x3 ≥ 0

Choose non-negative y1, y2 and multiply inequalities

maximize 4x1+ x2+ 3x3

subject to y1(x1+ 4x2 ) ≤ 2y1

y2(2x1− x2+ x3) ≤ 4y2

x1, x2, x3 ≥ 0
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Duality for another canonical form

Choose non-negative y1, y2 and multiply inequalities

maximize 4x1+ x2+ 3x3

subject to y1(x1+ 4x2 ) ≤ 2y1

y2(2x1− x2+ x3) ≤ 4y2

x1, x2, x3 ≥ 0

Adding the inequalities we get an inequality below that is valid for
any feasible x and any non-negative y :

(y1 + 2y2)x1 + (4y1 − y2)x2 + y2x3 ≤ 2y1 + 4y2

Suppose we choose y1, y2 such that
y1 + 2y2 ≥ 4 and 4y2 − y2 ≥ 1 and y2 ≥ 3
Then, since x1, x2, x3 ≥ 0, we have 4x1 + x2 + 3x3 ≤ 2y1 + 4y2
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Duality for another canonical form

maximize 4x1+ x2+ 3x3

subject to x1+ 4x2 ≤ 2
2x1− x2+ x3 ≤ 4

x1, x2, x3 ≥ 0

is upper bounded by

minimize 2y1+ 4y2

subject to y1+ 2y2 ≥ 4
4y1− y2 ≥ 1

y2 ≥ 3
y1, y2 ≥ 0
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Duality for another canonical form

Compactly, for the primal LP Π

max c · x
subject to Ax ≤ b, x ≥ 0

the dual LP is Dual(Π)

min y · b
subject to yA ≥ c, y ≥ 0

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1, . . . , n, yi > 0 ⇒ (Ax)i = bi
∀j = 1, . . . , d , xj > 0 ⇒ (yA)j = cj
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In General...
from Jeff’s notes
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Some Useful Duality Properties

Assume primal LP is a maximization LP.

For a given LP, Dual is another LP. The variables in the dual
correspond to “tight” primal constraints and vice-versa.

Dual of the dual LP give us back the primal LP.

Weak and strong duality theorems.

If primal is unbounded (objective achieves infinity) then dual LP
is infeasible. Why? If dual LP had a feasible solution it would
upper bound the primal LP which is not possible.

If primal is infeasible then dual LP is unbounded.

Primal and dual optimum solutions satisfy complementary
slackness conditions (discussed soon).
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Part II

Examples of Duality
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Max matching in bipartite graph as LP

Input:G = (V = L ∪ R, E)

max
∑
uv∈E

xuv

s.t.
∑
uv∈E

xuv ≤ 1 ∀v ∈ V .

xuv ≥ 0 ∀uv ∈ E

When one writes combinatorial problems as LPs one is writing a
single formulation in an abstract way that applies to all instances. In
the above, for each fixed graph G one gets a fixed LP and hence the
above is sometimes called a “formulation”.

Ruta (UIUC) CS473 42 Spring 2018 42 / 45



Max matching in bipartite graph as LP

Input:G = (V = L ∪ R, E)

max
∑
uv∈E

xuv

s.t.
∑
uv∈E

xuv ≤ 1 ∀v ∈ V .

xuv ≥ 0 ∀uv ∈ E

Dual LP has one variable yv for each vertex v ∈ V .

min
∑
v∈V

yv

s.t. yu + yv ≥ 1 ∀uv ∈ E

yv ≥ 0 ∀v ∈ V
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Network flow

s-t flow in directed graph G = (V ,E) with capacities c . Assume
for simplicity that no incoming edges into s.

max
∑

(s,v)∈E

x(s, v)

∑
(u,v)∈E

x(u, v)−
∑

(v ,w)∈E

x(v ,w) = 0 ∀v ∈ V \ {s, t}

x(u, v) ≤ c(u, v) ∀(u, v) ∈ E

x(u, v) ≥ 0 ∀(u, v) ∈ E.
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Dual of Network Flow
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