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Part I

Recall
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Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 5
2x1− 4x2 ≤ 10
x1+ x2 ≤ 7

x1 ≤ 5

1 (2, 0) also feasible, and gives a better bound of 8.

2 How good is 8 when compared with σ∗?
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Obtaining Upper Bounds

1 Let us multiply the first constraint by 2 and the and add it to
second constraint

2( x1+ 3x2 ) ≤ 2(5)
+1( 2x1− 4x2 ) ≤ 1(10)

4x1+ 2x2 ≤ 20

2 Thus, 20 is an upper bound on the optimum value!
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Generalizing . . .

1 Multiply first equation by y1, second by y2, third by y3 and
fourth by y4 (all of y1, y2, y3, y4 being positive) and add

y1( x1+ 3x2 ) ≤ y1(5)
+y2( 2x1− 4x2 ) ≤ y2(10)
+y3( x1+ x2 ) ≤ y3(7)
+y4( x1 ) ≤ y4(5)
(y1 + 2y2 + y3 + y4)x1 + (3y1 − 4y2 + y3)x2 ≤ . . .

2 5y1 + 10y2 + 7y3 + 5y4 is an upper bound, provided
coefficients of xi are same as in the objective function, i.e.,

y1 + 2y2 + y3 + y4 = 4 3y1 − 4y2 + y3 = 2

3 The best upper bound is when 5y1 + 10y2 + 7y3 + 5y4 is
minimized!
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Dual LP: Example

Thus, the optimum value of program

maximize 4x1 + 2x2

subject to x1 + 3x2 ≤ 5
2x1 − 4x2 ≤ 10

x1 + x2 ≤ 7
x1 ≤ 5

is upper bounded by the optimal value of the program

minimize 5y1 + 10y2 + 7y3 + 5y4

subject to y1 + 2y2 + y3 + y4 = 4
3y1 − 4y2 + y3 = 2

y1, y2 ≥ 0
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Dual Linear Program

Given a linear program Π in canonical form

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n

the dual Dual(Π) is given by

minimize
∑n

i=1 biyi
subject to

∑n
i=1 yiaij = cj j = 1, 2, . . . d

yi ≥ 0 i = 1, 2, . . . n

Proposition

Dual(Dual(Π)) is equivalent to Π
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Duality Theorems

Theorem (Weak Duality)

If x ′ is a feasible solution to Π and y ′ is a feasible solution to
Dual(Π) then c · x ′ ≤ y ′ · b.

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution to
Dual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced from
duality.
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Weak Duality

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

We already saw the proof by the way we derived it but we will do it
again formally.

Proof.
Since y ′ is feasible in Dual(Π): y ′A = c

Therefore c · x ′ = y ′Ax ′

Since x ′ is feasible in Π, Ax ′ ≤ b and hence,

c · x ′ = y ′Ax ′ ≤ y ′ · b

Ruta (UIUC) CS473 10 Spring 2018 10 / 36



Weak Duality

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

We already saw the proof by the way we derived it but we will do it
again formally.

Proof.
Since y ′ is feasible in Dual(Π): y ′A = c

Therefore c · x ′ = y ′Ax ′

Since x ′ is feasible in Π, Ax ′ ≤ b and hence,

c · x ′ = y ′Ax ′ ≤ y ′ · b

Ruta (UIUC) CS473 10 Spring 2018 10 / 36



Weak Duality

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

We already saw the proof by the way we derived it but we will do it
again formally.

Proof.
Since y ′ is feasible in Dual(Π): y ′A = c

Therefore c · x ′ = y ′Ax ′

Since x ′ is feasible in Π, Ax ′ ≤ b and hence,

c · x ′ = y ′Ax ′ ≤ y ′ · b
Ruta (UIUC) CS473 10 Spring 2018 10 / 36



Strong Duality ≡ Complementary Slackness

maximize : c · x
subject to Ax ≤ b

Dual−−→
minimize : y · b
subject to yA = c

y ≥ 0

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

Theorem
(x∗, y∗) satisfies complementary slackness⇔ Strong duality holds,
i.e., c · x∗ = y∗ · b.

Q: Why complementary slackness is satisfied at the optimum?
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Complementary Slackness: Geometric View

maximize : c · x
subject to Ax ≤ b

Dual−−→
minimize : y · b
subject to yA = c

y ≥ 0

∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

x∗: optimum vertex. Suppose first d inequalities are tight at x∗.

c is in the cone of
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Optimality implies Complementary Slackness

x∗ : Optimum vertex.

First d inequalities tight at x∗.

Ax∗ ≤ b splits into Âx∗ = b̂, Ãx∗ < b̃

Suppose c is NOT in the cone of rows of Â.

⇒ There exists a hyperplane separating c from the cone.
Suppose cone is on the negative side, and c on the positive size. If the d
is the normal vector of the hyperplane, then formally,

Âd < 0, c · d > 0 Also known as Farkas’ Lemma

Ruta (UIUC) CS473 13 Spring 2018 13 / 36



Optimality implies Complementary Slackness

x∗ : Optimum vertex. First d inequalities tight at x∗.

Ax∗ ≤ b splits into Âx∗ = b̂, Ãx∗ < b̃
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Suppose c is NOT in the cone of rows of Â.

⇒ There exists a hyperplane separating c from the cone.
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Choose v. v. tiny ε > 0 such that Ã(x∗ + εd) ≤ b̃.

Â(x∗ + εd) = Âx∗ + εÂd < b̂ ⇒ (x∗ + εd) is feasible in Π

c · (x∗ + εd) = c · x∗ + ε(c · d) > c · x∗ ⇒ x∗ is NOT optimum!
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⇒ There exists a hyperplane separating c from the cone.
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Âd < 0, c · d > 0 Also known as Farkas’ Lemma

Choose v. v. tiny ε > 0 such that Ã(x∗ + εd) ≤ b̃.
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Â(x∗ + εd) = Âx∗ + εÂd < b̂ ⇒ (x∗ + εd) is feasible in Π

c · (x∗ + εd) = c · x∗ + ε(c · d)

> c · x∗ ⇒ x∗ is NOT optimum!

Ruta (UIUC) CS473 14 Spring 2018 14 / 36



Optimality implies Complementary Slackness

x∗ : Optimum vertex. First d inequalities tight at x∗.

Ax∗ ≤ b splits into Âx∗ = b̂, Ãx∗ < b̃
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Proof of Strong Duality

x∗ : Optimum vertex. First d inequalities tight at x∗.

Ax∗ ≤ b splits into Âx∗ = b̂, Ãx∗ < b̃

Then c IS in the cone of rows of Â.

⇔ y∗ feasible in Dual(Π) such that (x∗, y∗) satisfies complementary
slackness.

⇔ (x∗, y∗) satisfies strong duality, c · x∗ = y∗ · b. (implies y∗ optimal

in Dual(Π)).

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution to
Dual(Π) then c · x∗ = y∗ · b.
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Optimization vs Feasibility

Suppose we want to solve LP of the form:

max cx subject to Ax ≤ b

It is an optimization problem. Can we reduce it to a decision
problem?

Yes, via binary search. Find the largest values of σ such
that the system of inequalities

Ax ≤ b, cx ≥ σ

is feasible. Feasible implies that there is at least one solution.
Caveat: to do binary search need to know the range of numbers.
Skip for now since we need to worry about precision issues etc.
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Certificate for (in)feasibility

Suppose we have a system of m inequalities in n variables defined by

Ax ≤ b

How can we convince some one that there is a feasible solution?

How can we convince some one that there is no feasible
solution?

Ruta (UIUC) CS473 17 Spring 2018 17 / 36



Theorem of the Alternatives

Theorem
Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following two holds
(i) The system Ax ≤ b is feasible.
(ii) There is a y ∈ Rm such that y ≥ 0 and yA = 0 and yb < 0.

In other words, if Ax ≤ b is infeasible we can demonstrate it as
follows: Find a non-negative combination of the rows of A (given by
certificate y) to get a contradiction 0 < 0.

0 = (yA)x = y(Ax) = y · b < 0!

(possibly) the Dual is unbounded!

The preceding theorem can also be used to prove strong duality.

Farkas’ lemma is another such theorem. These are related.
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follows: Find a non-negative combination of the rows of A (given by
certificate y) to get a contradiction 0 < 0.
0 = (yA)x = y(Ax) = y · b < 0!

(possibly) the Dual is unbounded!

The preceding theorem can also be used to prove strong duality.

Farkas’ lemma is another such theorem. These are related.
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Duality for another canonical form

Compactly, for the primal LP Π

max c · x
subject to Ax ≤ b, x ≥ 0

the dual LP is Dual(Π)

min y · b
subject to yA ≥ c, y ≥ 0

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1, . . . , n, yi > 0 ⇒ (Ax)i = bi
∀j = 1, . . . , d , xj > 0 ⇒ (yA)j = cj
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In General...
from Jeff’s notes
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Some Useful Duality Properties

Assume primal LP is a maximization LP.

For a given LP, Dual is another LP. The variables in the dual
correspond to “non-trival” primal constraints and vice-versa.

Dual of the dual LP give us back the primal LP.

Weak and strong duality theorems.

If primal is unbounded (objective achieves infinity) then dual LP
is infeasible. Why? If dual LP had a feasible solution it would
upper bound the primal LP which is not possible.

Primal and dual optimum solutions satisfy complementary
slackness conditions (discussed soon).
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Part II

Examples of Duality
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Network flow

s-t flow in directed graph G = (V ,E) with capacities c . Assume
for simplicity that no incoming edges into s.

max
∑

(s,v)∈E

x(s, v)

∑
(u,v)∈E

x(u, v)−
∑

(v ,w)∈E

x(v ,w) = 0 ∀v ∈ V \ {s, t}

x(u, v) ≤ c(u, v) ∀(u, v) ∈ E

x(u, v) ≥ 0 ∀(u, v) ∈ E.
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Network flow: Equivalent formulation

Directed graph G = (V ,E), with capacities on edges. Add a t to s
edge with infinite capacity. Now maximize flow on this edge.

max x(t, s)∑
(u,v)∈E

x(u, v)−
∑

(v ,w)∈E

x(v ,w) = 0 ∀v ∈ V

x(u, v) ≤ c(u, v) ∀(u, v) ∈ E \ (t, s)

x(u, v) ≥ 0 ∀(u, v) ∈ E.
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Dual of Network Flow
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Part III

Integer Linear Programming
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Integer Linear Programming

Problem
Find a vector x ∈ Zd (integer values) that

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Input is matrix A = (aij) ∈ Rn×d , column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd
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Factory Example

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

Suppose we want x1, x2 to be integer valued.
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Factory Example Figure

x2

x1

300

200
1 Feasible values of x1 and x2 are integer

points in shaded region

2 Optimization function is a line; moving the
line until it just leaves the final integer
point in feasible region, gives optimal values
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Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods

1 branch and bound

2 branch and cut

3 adding cutting planes

4 linear programming plays a fundamental role
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Example: Maximum Independent Set

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G

Ruta (UIUC) CS473 31 Spring 2018 31 / 36



Example: Dominating Set

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is a
dominating set if for all v ∈ V , either v ∈ S or a neighbor of v is in
S .

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find minimum weight dominating set in G
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Example: s-t minimum cut and implicit constraints

Input Graph G = (V ,E), edge capacities c(e), e ∈ E .
s, t ∈ V

Goal Find minimum capacity s-t cut in G .
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Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.

Then solving linear program is same as solving integer program. We
know how to solve linear programs efficiently (polynomial time) and
hence we get an integer solution for free!

Luck or Structure:
1 Linear program for flows with integer capacities have integer

vertices
2 Linear program for matchings in bipartite graphs have integer

vertices
3 A complicated linear program for matchings in general graphs

have integer vertices.

All of above problems can hence be solved efficiently.

Ruta (UIUC) CS473 34 Spring 2018 34 / 36



Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.
Then solving linear program is same as solving integer program. We
know how to solve linear programs efficiently (polynomial time) and
hence we get an integer solution for free!

Luck or Structure:
1 Linear program for flows with integer capacities have integer

vertices
2 Linear program for matchings in bipartite graphs have integer

vertices
3 A complicated linear program for matchings in general graphs

have integer vertices.

All of above problems can hence be solved efficiently.

Ruta (UIUC) CS473 34 Spring 2018 34 / 36



Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.
Then solving linear program is same as solving integer program. We
know how to solve linear programs efficiently (polynomial time) and
hence we get an integer solution for free!

Luck or Structure:
1 Linear program for flows with integer capacities have integer

vertices
2 Linear program for matchings in bipartite graphs have integer

vertices
3 A complicated linear program for matchings in general graphs

have integer vertices.

All of above problems can hence be solved efficiently.

Ruta (UIUC) CS473 34 Spring 2018 34 / 36



Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved
efficiently if and only if there is a linear program for problem with
integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations
such as convex programming are the most general problems that we
can solve efficiently.
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Summary

1 Linear Programming is a useful and powerful (modeling)
problem.

2 Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

3 Geometry and linear algebra are important to understand the
structure of LP and in algorithm design. Vertex solutions imply
that LPs have poly-sized optimum solutions. This implies that
LP is in NP.

4 Duality is a critical tool in the theory of linear programming.
Duality implies the Linear Programming is in co-NP. Do you
see why?

5 Integer Programming in NP-Complete. LP-based techniques
critical in heuristically solving integer programs.
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