CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign
Spring 2018

CS 473: Algorithms, Spring 2018

LP Duality

Lecture 20
April 3, 2018

Some of the slides are courtesy Prof. Chekuri1

Part I

Recall

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\text { maximize } & 4 x_{1}+ & 2 x_{2} & \\
\text { subject to } & x_{1}+ & 3 x_{2} & \leq 5 \\
& 2 x_{1}- & 4 x_{2} & \leq 10 \\
& x_{1}+ & x_{2} & \leq 7 \\
& x_{1} & & \leq 5
\end{array}
$$

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\text { maximize } & 4 x_{1}+ & 2 x_{2} & \\
\text { subject to } & x_{1}+ & 3 x_{2} & \leq 5 \\
& 2 x_{1}- & 4 x_{2} & \leq 10 \\
& x_{1}+ & x_{2} & \leq 7 \\
& x_{1} & & \leq 5
\end{array}
$$

(1) $(2,0)$ also feasible, and gives a better bound of 8 .

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\operatorname{maximize} & 4 x_{1}+ & 2 x_{2} & \\
\text { subject to } & x_{1}+ & 3 x_{2} & \leq 5 \\
& 2 x_{1}- & 4 x_{2} & \leq 10 \\
& x_{1}+ & x_{2} & \leq 7 \\
& x_{1} & & \leq 5
\end{array}
$$

(1) $(2,0)$ also feasible, and gives a better bound of 8 .
(2) How good is 8 when compared with σ^{*} ?

Obtaining Upper Bounds

(1) Let us multiply the first constraint by 2 and the and add it to second constraint

$$
\begin{aligned}
& 2\left(\begin{array}{rl}
x_{1}+ & 3 x_{2}
\end{array}\right) \leq 2(5) \\
&+1\left(2 x_{1}-4 x_{2}\right.) \leq 1(10) \\
& \hline 4 x_{1}+2 x_{2} \leq 20
\end{aligned}
$$

(2) Thus, 20 is an upper bound on the optimum value!

Generalizing . . .

(1) Multiply first equation by y_{1}, second by y_{2}, third by y_{3} and fourth by y_{4} (all of $y_{1}, y_{2}, y_{3}, y_{4}$ being positive) and add

$$
\begin{array}{rcrl}
y_{1}(& x_{1}+ & 3 x_{2} &) \leq y_{1}(5) \\
+y_{2}(& 2 x_{1}- & 4 x_{2} &) \leq y_{2}(10) \\
+y_{3}(& x_{1}+ & x_{2} &) \leq y_{3}(7) \\
+y_{4}(& x_{1} & &) \leq y_{4}(5) \\
\hline\left(y_{1}+2 y_{2}+y_{3}+y_{4}\right) x_{1}+\left(3 y_{1}-4 y_{2}+y_{3}\right) x_{2} \leq \ldots
\end{array}
$$

(2) $5 y_{1}+10 y_{2}+7 y_{3}+5 y_{4}$ is an upper bound, provided coefficients of x_{i} are same as in the objective function, i.e.,

$$
y_{1}+2 y_{2}+y_{3}+y_{4}=4 \quad 3 y_{1}-4 y_{2}+y_{3}=2
$$

(3) The best upper bound is when $5 y_{1}+10 y_{2}+7 y_{3}+5 y_{4}$ is minimized!

Dual LP: Example

Thus, the optimum value of program

$$
\begin{array}{lr}
\text { maximize } & 4 x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+3 x_{2} \leq 5 \\
2 x_{1}-4 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 7 \\
& x_{1} \leq 5
\end{array}
$$

is upper bounded by the optimal value of the program

$$
\begin{array}{lr}
\operatorname{minimize} & 5 y_{1}+10 y_{2}+7 y_{3}+5 y_{4} \\
\text { subject to } & y_{1}+2 y_{2}+y_{3}+y_{4}=4 \\
3 y_{1}-4 y_{2}+y_{3}=2 \\
y_{1}, y_{2} \geq 0
\end{array}
$$

Dual Linear Program

Given a linear program $\boldsymbol{\Pi}$ in canonical form

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad i=1,2, \ldots n
\end{array}
$$

the dual Dual(П) is given by

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i=1}^{n} b_{i} y_{i} & \\
\text { subject to } & \sum_{i=1}^{n} y_{i} a_{i j}=c_{j} & j=1,2, \ldots d \\
& y_{i} \geq 0 & i=1,2, \ldots n
\end{array}
$$

Dual Linear Program

Given a linear program $\boldsymbol{\Pi}$ in canonical form

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad i=1,2, \ldots n
\end{array}
$$

the dual $\operatorname{Dual}(\Pi)$ is given by

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i=1}^{n} b_{i} y_{i} \\
\text { subject to } & \sum_{i=1}^{n} y_{i} a_{i j}=c_{j} & j=1,2, \ldots d \\
& y_{i} \geq 0 & i=1,2, \ldots n
\end{array}
$$

Proposition

Dual(Dual(П)) is equivalent to $\boldsymbol{\Pi}$

Duality Theorems

Theorem (Weak Duality)

If x^{\prime} is a feasible solution to Π and y^{\prime} is a feasible solution to Dual(П) then $\boldsymbol{c} \cdot \boldsymbol{x}^{\prime} \leq \boldsymbol{y}^{\prime} \cdot \boldsymbol{b}$.

Duality Theorems

Theorem (Weak Duality)

If x^{\prime} is a feasible solution to Π and y^{\prime} is a feasible solution to Dual(П) then $c \cdot x^{\prime} \leq y^{\prime} \cdot b$.

```
Theorem (Strong Duality)
If \(\boldsymbol{x}^{*}\) is an optimal solution to \(\boldsymbol{\Pi}\) and \(\boldsymbol{y}^{*}\) is an optimal solution to Dual(П) then \(c \cdot x^{*}=y^{*} \cdot b\).
```

Many applications! Maxflow-Mincut theorem can be deduced from duality.

Weak Duality

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to Dual(П) then $\boldsymbol{c} \cdot \boldsymbol{x} \leq \boldsymbol{y} \cdot \boldsymbol{b}$.

We already saw the proof by the way we derived it but we will do it again formally.

Proof.

Since y^{\prime} is feasible in Dual(П): $\boldsymbol{y}^{\prime} \boldsymbol{A}=c$

Weak Duality

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to $\operatorname{Dual}(\boldsymbol{\Pi})$ then $\boldsymbol{c} \cdot \boldsymbol{x} \leq \boldsymbol{y} \cdot \boldsymbol{b}$.

We already saw the proof by the way we derived it but we will do it again formally.

Proof.

Since y^{\prime} is feasible in Dual(П): $\boldsymbol{y}^{\prime} \boldsymbol{A}=\boldsymbol{c}$
Therefore $c \cdot x^{\prime}=y^{\prime} \boldsymbol{A} \boldsymbol{x}^{\prime}$

Weak Duality

Theorem (Weak Duality)

If \boldsymbol{x} is a feasible solution to Π and \boldsymbol{y} is a feasible solution to Dual(П) then $\boldsymbol{c} \cdot \boldsymbol{x} \leq \boldsymbol{y} \cdot \boldsymbol{b}$.

We already saw the proof by the way we derived it but we will do it again formally.

Proof.

Since \boldsymbol{y}^{\prime} is feasible in Dual(П): $\boldsymbol{y}^{\prime} \boldsymbol{A}=\boldsymbol{c}$
Therefore $c \cdot x^{\prime}=y^{\prime} \boldsymbol{A} \boldsymbol{x}^{\prime}$
Since \boldsymbol{x}^{\prime} is feasible in $\boldsymbol{\Pi}, \boldsymbol{A} \boldsymbol{x}^{\prime} \leq \boldsymbol{b}$ and hence,

$$
c \cdot x^{\prime}=y^{\prime} A x^{\prime} \leq y^{\prime} \cdot b
$$

Strong Duality \equiv Complementary Slackness

$$
\begin{array}{ll}
\text { maximize }: & \boldsymbol{c} \cdot \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} x \leq \boldsymbol{b}
\end{array} \quad \xrightarrow{\text { Dual }} \quad \begin{array}{ll}
\text { minimize }: & y \cdot b \\
\text { subject to } & y \boldsymbol{A}=\boldsymbol{c} \\
&
\end{array}
$$

Definition (Complementary Slackness)

x feasible in Π and y feasible in $\operatorname{Dual}(\Pi)$, s.t.,

$$
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
$$

Strong Duality \equiv Complementary Slackness

$$
\begin{array}{ll}
\operatorname{maximize}: & c \cdot x \\
\text { subject to } & A x \leq b
\end{array} \quad \xrightarrow{\text { Dual }}
$$

Definition (Complementary Slackness)

x feasible in Π and y feasible in $\operatorname{Dual}(\Pi)$, s.t.,

$$
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
$$

Theorem

$\left(x^{*}, y^{*}\right)$ satisfies complementary slackness \Leftrightarrow Strong duality holds, i.e., $c \cdot x^{*}=y^{*} \cdot b$.

Strong Duality \equiv Complementary Slackness

$$
\begin{array}{llll}
\operatorname{maximize}: & \boldsymbol{c} \cdot \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} x \leq \boldsymbol{b}
\end{array} \quad \xrightarrow{\text { Dual }} \quad \begin{array}{ll}
\text { minimize }: & \boldsymbol{y} \cdot \boldsymbol{b} \\
\text { subject to } & \boldsymbol{y} \boldsymbol{A}=\boldsymbol{c} \\
& \boldsymbol{y} \geq \mathbf{0}
\end{array}
$$

Definition (Complementary Slackness)

x feasible in Π and y feasible in $\operatorname{Dual}(\Pi)$, s.t.,

$$
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
$$

Theorem

$\left(x^{*}, y^{*}\right)$ satisfies complementary slackness \Leftrightarrow Strong duality holds, i.e., $c \cdot x^{*}=y^{*} \cdot b$.

Q: Why complementary slackness is satisfied at the optimum?

Complementary Slackness: Geometric View

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{maximize}: \\
\text { subject to } \\
A x \leq b
\end{array} \quad \xrightarrow{\text { Dual }} \quad \begin{array}{l}
\text { minimize }: \begin{array}{l}
y \cdot b \\
\text { subject to } \\
y A=c \\
y \geq 0
\end{array} \\
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
\end{array}, l
\end{aligned}
$$

Complementary Slackness: Geometric View

$$
\begin{array}{ll}
\operatorname{maximize}: & \boldsymbol{c} \cdot \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} x \leq \boldsymbol{b}
\end{array} \quad \xrightarrow{\text { Dual }} \quad \begin{array}{ll}
\text { minimize }: & \boldsymbol{y} \cdot \boldsymbol{b} \\
\text { subject to } & y \boldsymbol{A}=\boldsymbol{c} \\
& y \geq \mathbf{0}
\end{array}
$$

$$
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
$$

x^{*} : optimum vertex. Suppose first \boldsymbol{d} inequalities are tight at x^{*}.

Complementary Slackness: Geometric View

$$
\begin{array}{ll}
\operatorname{maximize}: & \boldsymbol{c} \cdot \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} x \leq \boldsymbol{b}
\end{array} \quad \xrightarrow{\text { Dual }} \quad \begin{array}{ll}
\text { minimize }: & y \cdot b \\
\text { subject to } & y \boldsymbol{A}=\boldsymbol{c} \\
&
\end{array}
$$

$$
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
$$

x^{*} : optimum vertex. Suppose first \boldsymbol{d} inequalities are tight at x^{*}.
\boldsymbol{c} is in the cone of

Optimality implies Complementary Slackness

x^{*} : Optimum vertex.

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose c is NOT in the cone of rows of \hat{A}.

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose \boldsymbol{c} is NOT in the cone of rows of $\hat{\boldsymbol{A}}$.

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose \boldsymbol{c} is NOT in the cone of rows of $\hat{\boldsymbol{A}}$.

\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose \boldsymbol{c} is NOT in the cone of rows of $\hat{\boldsymbol{A}}$.

\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.
Suppose cone is on the negative side, and \boldsymbol{c} on the positive size. If the \boldsymbol{d} is the normal vector of the hyperplane, then formally,

$$
\hat{A} d<0, \quad c \cdot d>0
$$

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose \boldsymbol{c} is NOT in the cone of rows of $\hat{\boldsymbol{A}}$.

\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.
Suppose cone is on the negative side, and \boldsymbol{c} on the positive size. If the \boldsymbol{d} is the normal vector of the hyperplane, then formally,

$$
\hat{A} \boldsymbol{d}<\mathbf{0}, \quad \boldsymbol{c} \cdot \boldsymbol{d}>\mathbf{0} \quad \text { Also known as Farkas' Lemma }
$$

Optimality implies Complementary Slackness

x^{*} : Optimum vertex.

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose c is NOT in the cone of rows of \hat{A}.
\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.

$$
\hat{A} \boldsymbol{d}<\mathbf{0}, \quad \boldsymbol{c} \cdot \boldsymbol{d}>\mathbf{0} \quad \text { Also known as Farkas' Lemma }
$$

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose c is NOT in the cone of rows of \hat{A}.
\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.

$$
\hat{A} \boldsymbol{d}<\mathbf{0}, \quad \boldsymbol{c} \cdot \boldsymbol{d}>\mathbf{0} \quad \text { Also known as Farkas' Lemma }
$$

Choose v. v. tiny $\boldsymbol{\epsilon}>\mathbf{0}$ such that $\tilde{\boldsymbol{A}}\left(x^{*}+\boldsymbol{\epsilon d}\right) \leq \tilde{\boldsymbol{b}}$.

$$
\hat{A}\left(x^{*}+\epsilon d\right)=\hat{A} x^{*}+\epsilon \hat{A} d<\hat{b} \Rightarrow
$$

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose c is NOT in the cone of rows of \hat{A}.
\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.

$$
\hat{A} \boldsymbol{d}<\mathbf{0}, \quad \boldsymbol{c} \cdot \boldsymbol{d}>\mathbf{0} \quad \text { Also known as Farkas' Lemma }
$$

Choose v. v. tiny $\boldsymbol{\epsilon}>\mathbf{0}$ such that $\tilde{\boldsymbol{A}}\left(\boldsymbol{x}^{*}+\boldsymbol{\epsilon d}\right) \leq \tilde{\boldsymbol{b}}$.

$$
\hat{A}\left(x^{*}+\epsilon d\right)=\hat{A} x^{*}+\epsilon \hat{A} d<\hat{b} \Rightarrow\left(x^{*}+\epsilon d\right) \text { is feasible in } \Pi
$$

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose c is NOT in the cone of rows of \hat{A}.
\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.

$$
\hat{A} \boldsymbol{d}<\mathbf{0}, \quad \boldsymbol{c} \cdot \boldsymbol{d}>\mathbf{0} \quad \text { Also known as Farkas' Lemma }
$$

Choose v. v. tiny $\boldsymbol{\epsilon}>\mathbf{0}$ such that $\tilde{\boldsymbol{A}}\left(\boldsymbol{x}^{*}+\boldsymbol{\epsilon d}\right) \leq \tilde{\boldsymbol{b}}$.

$$
\hat{A}\left(x^{*}+\epsilon d\right)=\hat{A} x^{*}+\epsilon \hat{A} d<\hat{b} \Rightarrow\left(x^{*}+\epsilon d\right) \text { is feasible in } \Pi
$$

$c \cdot\left(x^{*}+\epsilon d\right)=c \cdot x^{*}+\epsilon(c \cdot d)$

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose c is NOT in the cone of rows of \hat{A}.
\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.

$$
\hat{A} \boldsymbol{d}<\mathbf{0}, \quad \boldsymbol{c} \cdot \boldsymbol{d}>\mathbf{0} \quad \text { Also known as Farkas' Lemma }
$$

Choose v. v. tiny $\boldsymbol{\epsilon}>\mathbf{0}$ such that $\tilde{\boldsymbol{A}}\left(\boldsymbol{x}^{*}+\boldsymbol{\epsilon d}\right) \leq \tilde{\boldsymbol{b}}$.

$$
\hat{A}\left(x^{*}+\epsilon d\right)=\hat{A} x^{*}+\epsilon \hat{A} d<\hat{b} \Rightarrow\left(x^{*}+\epsilon d\right) \text { is feasible in } \Pi
$$

$c \cdot\left(x^{*}+\epsilon \boldsymbol{d}\right)=c \cdot x^{*}+\epsilon(c \cdot d)>c \cdot x^{*} \Rightarrow$

Optimality implies Complementary Slackness

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Suppose c is NOT in the cone of rows of \hat{A}.
\Rightarrow There exists a hyperplane separating \boldsymbol{c} from the cone.

$$
\hat{A} \boldsymbol{d}<\mathbf{0}, \quad \boldsymbol{c} \cdot \boldsymbol{d}>\mathbf{0} \quad \text { Also known as Farkas' Lemma }
$$

Choose v. v. tiny $\boldsymbol{\epsilon}>\mathbf{0}$ such that $\tilde{\boldsymbol{A}}\left(\boldsymbol{x}^{*}+\boldsymbol{\epsilon d}\right) \leq \tilde{\boldsymbol{b}}$.

$$
\hat{A}\left(x^{*}+\epsilon d\right)=\hat{A} x^{*}+\epsilon \hat{A} d<\hat{b} \Rightarrow\left(x^{*}+\epsilon d\right) \text { is feasible in } \Pi
$$

$c \cdot\left(x^{*}+\epsilon \boldsymbol{d}\right)=c \cdot x^{*}+\epsilon(c \cdot d)>c \cdot x^{*} \Rightarrow x^{*}$ is NOT optimum!

Proof of Strong Duality

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Then c IS in the cone of rows of $\hat{\boldsymbol{A}}$.

Proof of Strong Duality

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Then c IS in the cone of rows of $\hat{\boldsymbol{A}}$.
$\Leftrightarrow \boldsymbol{y}^{*}$ feasible in Dual(П) such that ($\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$) satisfies complementary slackness.

Proof of Strong Duality

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Then c IS in the cone of rows of $\hat{\boldsymbol{A}}$.
$\Leftrightarrow \boldsymbol{y}^{*}$ feasible in $\operatorname{Dual}(\boldsymbol{\Pi})$ such that $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ satisfies complementary slackness.
$\Leftrightarrow\left(x^{*}, \boldsymbol{y}^{*}\right)$ satisfies strong duality, $\boldsymbol{c} \cdot \boldsymbol{x}^{*}=\boldsymbol{y}^{*} \cdot \boldsymbol{b}$.

Proof of Strong Duality

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Then c IS in the cone of rows of $\hat{\boldsymbol{A}}$.
$\Leftrightarrow \boldsymbol{y}^{*}$ feasible in $\operatorname{Dual}(\boldsymbol{\Pi})$ such that $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ satisfies complementary slackness.
$\Leftrightarrow\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ satisfies strong duality, $\boldsymbol{c} \cdot \boldsymbol{x}^{*}=\boldsymbol{y}^{*} \cdot \boldsymbol{b}$. (implies \boldsymbol{y}^{*} optimal in Dual(П)).

Proof of Strong Duality

\boldsymbol{x}^{*} : Optimum vertex. First \boldsymbol{d} inequalities tight at \boldsymbol{x}^{*}.

$$
\boldsymbol{A} \boldsymbol{x}^{*} \leq \boldsymbol{b} \quad \text { splits into } \quad \hat{\boldsymbol{A}} \boldsymbol{x}^{*}=\hat{\boldsymbol{b}}, \quad \tilde{\boldsymbol{A}} \boldsymbol{x}^{*}<\tilde{\boldsymbol{b}}
$$

Then c IS in the cone of rows of $\hat{\boldsymbol{A}}$.
$\Leftrightarrow \boldsymbol{y}^{*}$ feasible in $\operatorname{Dual}(\boldsymbol{\Pi})$ such that $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ satisfies complementary slackness.
$\Leftrightarrow\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ satisfies strong duality, $\boldsymbol{c} \cdot \boldsymbol{x}^{*}=\boldsymbol{y}^{*} \cdot \boldsymbol{b}$. (implies \boldsymbol{y}^{*} optimal in Dual(П)).

Theorem (Strong Duality)

If \boldsymbol{x}^{*} is an optimal solution to Π and \boldsymbol{y}^{*} is an optimal solution to Dual(П) then $c \cdot \boldsymbol{x}^{*}=\boldsymbol{y}^{*} \cdot \boldsymbol{b}$.

Optimization vs Feasibility

Suppose we want to solve LP of the form:

$\max \boldsymbol{c x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$

It is an optimization problem. Can we reduce it to a decision problem?

Optimization vs Feasibility

Suppose we want to solve LP of the form:

$\max c x$ subject to $\boldsymbol{A x} \leq \boldsymbol{b}$

It is an optimization problem. Can we reduce it to a decision problem? Yes, via binary search. Find the largest values of σ such that the system of inequalities

$$
A x \leq b, c x \geq \sigma
$$

is feasible. Feasible implies that there is at least one solution.

Optimization vs Feasibility

Suppose we want to solve LP of the form:

$\max \boldsymbol{c x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$

It is an optimization problem. Can we reduce it to a decision problem? Yes, via binary search. Find the largest values of σ such that the system of inequalities

$$
A x \leq b, c x \geq \sigma
$$

is feasible. Feasible implies that there is at least one solution. Caveat: to do binary search need to know the range of numbers. Skip for now since we need to worry about precision issues etc.

Certificate for (in)feasibility

Suppose we have a system of \boldsymbol{m} inequalities in \boldsymbol{n} variables defined by

$$
A x \leq b
$$

- How can we convince some one that there is a feasible solution?
- How can we convince some one that there is no feasible solution?

Theorem of the Alternatives

Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$. Exactly one of the following two holds
(i) The system $\boldsymbol{A x} \leq \boldsymbol{b}$ is feasible.
(ii) There is a $y \in \mathbb{R}^{\boldsymbol{m}}$ such that $\boldsymbol{y} \geq \mathbf{0}$ and $y \mathbf{A}=\mathbf{0}$ and $\boldsymbol{y b}<\mathbf{0}$.

In other words, if $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is infeasible we can demonstrate it as follows: Find a non-negative combination of the rows of \boldsymbol{A} (given by certificate \boldsymbol{y}) to get a contradiction $\mathbf{0}<\mathbf{0}$.

Theorem of the Alternatives

Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$. Exactly one of the following two holds
(i) The system $\boldsymbol{A x} \leq \boldsymbol{b}$ is feasible.
(ii) There is a $y \in \mathbb{R}^{\boldsymbol{m}}$ such that $\boldsymbol{y} \geq \mathbf{0}$ and $y \mathbf{A}=\mathbf{0}$ and $\boldsymbol{y b}<\mathbf{0}$.

In other words, if $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is infeasible we can demonstrate it as follows: Find a non-negative combination of the rows of \boldsymbol{A} (given by certificate \boldsymbol{y}) to get a contradiction $\mathbf{0}<\mathbf{0}$. $0=(y A)$

Theorem of the Alternatives

Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$. Exactly one of the following two holds
(i) The system $\boldsymbol{A x} \leq \boldsymbol{b}$ is feasible.
(ii) There is a $y \in \mathbb{R}^{\boldsymbol{m}}$ such that $\boldsymbol{y} \geq \mathbf{0}$ and $y \mathbf{A}=\mathbf{0}$ and $\boldsymbol{y b}<\mathbf{0}$.

In other words, if $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is infeasible we can demonstrate it as follows: Find a non-negative combination of the rows of \boldsymbol{A} (given by certificate \boldsymbol{y}) to get a contradiction $\mathbf{0}<\mathbf{0}$.
$0=(y A) x=y(A x)=$

Theorem of the Alternatives

Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$. Exactly one of the following two holds
(i) The system $\boldsymbol{A x} \leq \boldsymbol{b}$ is feasible.
(ii) There is a $y \in \mathbb{R}^{\boldsymbol{m}}$ such that $\boldsymbol{y} \geq \mathbf{0}$ and $y \mathbf{A}=\mathbf{0}$ and $\boldsymbol{y b}<\mathbf{0}$.

In other words, if $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is infeasible we can demonstrate it as follows: Find a non-negative combination of the rows of \boldsymbol{A} (given by certificate \boldsymbol{y}) to get a contradiction $\mathbf{0}<\mathbf{0}$. $0=(y A) x=y(A x)=y \cdot b<0$!

Theorem of the Alternatives

Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$. Exactly one of the following two holds
(i) The system $\boldsymbol{A x} \leq \boldsymbol{b}$ is feasible.
(ii) There is a $y \in \mathbb{R}^{\boldsymbol{m}}$ such that $\boldsymbol{y} \geq \mathbf{0}$ and $y \mathbf{A}=\mathbf{0}$ and $\boldsymbol{y b}<\mathbf{0}$.

In other words, if $\boldsymbol{A x} \leq \boldsymbol{b}$ is infeasible we can demonstrate it as follows: Find a non-negative combination of the rows of \boldsymbol{A} (given by certificate \boldsymbol{y}) to get a contradiction $\mathbf{0}<\mathbf{0}$. $0=(y A) x=y(A x)=y \cdot b<0$!
(possibly) the Dual is unbounded!

Theorem of the Alternatives

Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$. Exactly one of the following two holds
(i) The system $\boldsymbol{A x} \leq \boldsymbol{b}$ is feasible.
(ii) There is a $y \in \mathbb{R}^{\boldsymbol{m}}$ such that $\boldsymbol{y} \geq \mathbf{0}$ and $y \mathbf{A}=\mathbf{0}$ and $\boldsymbol{y b}<\mathbf{0}$.

In other words, if $\boldsymbol{A x} \leq \boldsymbol{b}$ is infeasible we can demonstrate it as follows: Find a non-negative combination of the rows of \boldsymbol{A} (given by certificate \boldsymbol{y}) to get a contradiction $\mathbf{0}<\mathbf{0}$. $0=(y A) x=y(A x)=y \cdot b<0$!
(possibly) the Dual is unbounded!
The preceding theorem can also be used to prove strong duality.

Theorem of the Alternatives

Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$. Exactly one of the following two holds
(i) The system $\boldsymbol{A x} \leq \boldsymbol{b}$ is feasible.
(ii) There is a $y \in \mathbb{R}^{\boldsymbol{m}}$ such that $\boldsymbol{y} \geq \mathbf{0}$ and $y \mathbf{A}=\mathbf{0}$ and $\boldsymbol{y b}<\mathbf{0}$.

In other words, if $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is infeasible we can demonstrate it as follows: Find a non-negative combination of the rows of \boldsymbol{A} (given by certificate \boldsymbol{y}) to get a contradiction $\mathbf{0}<\mathbf{0}$.
$0=(y A) x=y(A x)=y \cdot b<0$!
(possibly) the Dual is unbounded!

The preceding theorem can also be used to prove strong duality.

Farkas' lemma is another such theorem. These are related.

Duality for another canonical form

Compactly, for the primal LP П

$$
\begin{array}{ll}
\max & \boldsymbol{c} \cdot \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

the dual LP is Dual(П)

$$
\begin{array}{ll}
\min & y \cdot b \\
\text { subject to } & y A \geq c, y \geq 0
\end{array}
$$

Definition (Complementary Slackness)

x feasible in Π and y feasible in $\operatorname{Dual}(\Pi)$, s.t.,

$$
\begin{aligned}
& \forall i=1, \ldots, n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i} \\
& \forall j=1, \ldots, d, \quad x_{j}>0 \Rightarrow(y A)_{j}=c_{j}
\end{aligned}
$$

In General...

from Jeff's notes

Primal	Dual		Primal	Dual
$\max c \cdot x$	$\min y \cdot b$		$\min c \cdot x$	$\max y \cdot b$
$\sum_{j} a_{i j} x_{j} \leq b_{i}$	$y_{i} \geq 0$		$\sum_{j} a_{i j} x_{j} \leq b_{i}$	$y_{i} \leq 0$
$\sum_{j} a_{i j} x_{j} \geq b_{i}$	$y_{i} \leq 0$		$\sum_{j} a_{i j} x_{j} \geq b_{i}$	$y_{i} \geq 0$
$\sum_{j} a_{i j} x_{j}=b_{i}$	-		$\sum_{j} a_{i j} x_{j}=b_{i}$	-
$x_{j} \geq 0$	$\sum_{i} y_{i} a_{i j} \geq c_{j}$		$x_{j} \leq 0$	$\sum_{i} y_{i} a_{i j} \geq c_{j}$
$x_{j} \leq 0$	$\sum_{i} y_{i} a_{i j} \leq c_{j}$		$x_{j} \geq 0$	$\sum_{i} y_{i} a_{i j} \leq c_{j}$
-	$\sum_{i} y_{i} a_{i j}=c_{j}$	-	$\sum_{i} y_{i} a_{i j}=c_{j}$	
$x_{j}=0$	-	$x_{j}=0$	-	

Figure H.4. Constructing the dual of an arbitrary linear program.

Some Useful Duality Properties

Assume primal LP is a maximization LP.

- For a given LP, Dual is another LP. The variables in the dual correspond to "non-trival" primal constraints and vice-versa.
- Dual of the dual LP give us back the primal LP.
- Weak and strong duality theorems.

Some Useful Duality Properties

Assume primal LP is a maximization LP.

- For a given LP, Dual is another LP. The variables in the dual correspond to "non-trival" primal constraints and vice-versa.
- Dual of the dual LP give us back the primal LP.
- Weak and strong duality theorems.
- If primal is unbounded (objective achieves infinity) then dual LP is infeasible. Why? If dual LP had a feasible solution it would upper bound the primal LP which is not possible.

Some Useful Duality Properties

Assume primal LP is a maximization LP.

- For a given LP, Dual is another LP. The variables in the dual correspond to "non-trival" primal constraints and vice-versa.
- Dual of the dual LP give us back the primal LP.
- Weak and strong duality theorems.
- If primal is unbounded (objective achieves infinity) then dual LP is infeasible. Why? If dual LP had a feasible solution it would upper bound the primal LP which is not possible.
- Primal and dual optimum solutions satisfy complementary slackness conditions (discussed soon).

Part II

Examples of Duality

Network flow

\boldsymbol{s} - \boldsymbol{t} flow in directed graph $G=(V, E)$ with capacities c. Assume for simplicity that no incoming edges into s.
max

$$
\begin{array}{lr}
\sum_{(s, v) \in \mathrm{E}} x(s, v) \\
\sum_{(u, v) \in \mathrm{E}} x(u, v)-\sum_{(v, w) \in \mathrm{E}} x(v, w)=0 & \forall v \in \mathrm{~V} \backslash\{s, t\} \\
x(u, v) \leq c(u, v) & \forall(u, v) \in \mathrm{E} \\
x(u, v) \geq 0 & \forall(u, v) \in \mathrm{E}
\end{array}
$$

Network flow: Equivalent formulation

Directed graph $G=(V, E)$, with capacities on edges. Add a t to s edge with infinite capacity. Now maximize flow on this edge.

$$
\begin{array}{ll}
\max \quad x(t, s) \\
\sum_{(u, v) \in \mathrm{E}} x(u, v)-\sum_{(v, w) \in \mathrm{E}} x(v, w)=0 \quad \forall v \in V \\
x(u, v) \leq c(u, v) & \forall(u, v) \in \mathrm{E} \backslash(t, s) \\
x(u, v) \geq 0 & \forall(u, v) \in \mathrm{E}
\end{array}
$$

Dual of Network Flow

Part III

Integer Linear Programming

Integer Linear Programming

Problem

Find a vector $x \in Z^{d}$ (integer values) that

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \text { for } i=1 \ldots n
\end{array}
$$

Input is matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{d}}$, column vector $\boldsymbol{b}=\left(b_{i}\right) \in \mathbb{R}^{\boldsymbol{n}}$, and row vector $\boldsymbol{c}=\left(\boldsymbol{c}_{j}\right) \in \mathbb{R}^{\boldsymbol{d}}$

Factory Example

\[

\]

Suppose we want x_{1}, x_{2} to be integer valued.

Factory Example Figure

(1) Feasible values of x_{1} and x_{2} are integer points in shaded region
(2) Optimization function is a line; moving the line until it just leaves the final integer point in feasible region, gives optimal values

Factory Example Figure

(1) Feasible values of x_{1} and x_{2} are integer points in shaded region
(2) Optimization function is a line; moving the line until it just leaves the final integer point in feasible region, gives optimal values

Factory Example Figure

(1) Feasible values of x_{1} and x_{2} are integer points in shaded region
(2) Optimization function is a line; moving the line until it just leaves the final integer point in feasible region, gives optimal values

Integer Programming

Can model many difficult discrete optimization problems as integer programs!

Therefore integer programming is a hard problem. NP-hard.

Integer Programming

Can model many difficult discrete optimization problems as integer programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Integer Programming

Can model many difficult discrete optimization problems as integer programs!

Therefore integer programming is a hard problem. NP-hard.
Can relax integer program to linear program and approximate.
Practice: integer programs are solved by a variety of methods
(1) branch and bound
(2) branch and cut

O adding cutting planes

- linear programming plays a fundamental role

Example: Maximum Independent Set

Definition

Given undirected graph $G=(V, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.

Input Graph $G=(V, E)$
Goal Find maximum sized independent set in G

Example: Dominating Set

Definition

Given undirected graph $G=(\boldsymbol{V}, \boldsymbol{E})$ a subset of nodes $S \subseteq \boldsymbol{V}$ is a dominating set if for all $v \in V$, either $v \in S$ or a neighbor of v is in S.

Input Graph $G=(V, E)$, weights $w(v) \geq 0$ for $v \in V$
Goal Find minimum weight dominating set in G

Example: s-t minimum cut and implicit constraints

Input Graph $G=(V, E)$, edge capacities $c(e), e \in E$. $s, t \in V$
Goal Find minimum capacity s-t cut in \boldsymbol{G}.

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer coordinates.

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer coordinates.
Then solving linear program is same as solving integer program. We know how to solve linear programs efficiently (polynomial time) and hence we get an integer solution for free!

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer coordinates.
Then solving linear program is same as solving integer program. We know how to solve linear programs efficiently (polynomial time) and hence we get an integer solution for free!

Luck or Structure:
(1) Linear program for flows with integer capacities have integer vertices
(2) Linear program for matchings in bipartite graphs have integer vertices
(0) A complicated linear program for matchings in general graphs have integer vertices.
All of above problems can hence be solved efficiently.

Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved efficiently if and only if there is a linear program for problem with integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations such as convex programming are the most general problems that we can solve efficiently.

Summary

(1) Linear Programming is a useful and powerful (modeling) problem.

Summary

(1) Linear Programming is a useful and powerful (modeling) problem.
(2) Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.

Summary

(1) Linear Programming is a useful and powerful (modeling) problem.
(2) Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.
(0 Geometry and linear algebra are important to understand the structure of LP and in algorithm design. Vertex solutions imply that LPs have poly-sized optimum solutions. This implies that LP is in NP.

Summary

(1) Linear Programming is a useful and powerful (modeling) problem.
(2) Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.
(0 Geometry and linear algebra are important to understand the structure of LP and in algorithm design. Vertex solutions imply that LPs have poly-sized optimum solutions. This implies that LP is in NP.
(1) Duality is a critical tool in the theory of linear programming. Duality implies the Linear Programming is in co-NP. Do you see why?

Summary

(1) Linear Programming is a useful and powerful (modeling) problem.
(2) Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.
(0 Geometry and linear algebra are important to understand the structure of LP and in algorithm design. Vertex solutions imply that LPs have poly-sized optimum solutions. This implies that LP is in NP.
(1) Duality is a critical tool in the theory of linear programming. Duality implies the Linear Programming is in co-NP. Do you see why?

- Integer Programming in NP-Complete. LP-based techniques critical in heuristically solving integer programs.

