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Part I

Integer Linear Programming (ILP)
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Integer Linear Programming

Problem
Find a vector x ∈ Zd (integer values) that

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Input is matrix A = (aij) ∈ Rn×d , column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd
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Factory Example

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

Suppose we want x1, x2 to be integer valued.
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Factory Example Figure

x2

x1

300

200

1 Feasible values of x1 and x2 are
integer points in shaded region

2 Optimization function is a line; moving
the line until it just leaves the final
integer point in feasible region, gives
optimal values
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Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods

1 branch and bound

2 branch and cut

3 adding cutting planes

4 linear programming plays a fundamental role
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Example: Maximum Independent Set

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G
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Example: Dominating Set

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is a
dominating set if for all v ∈ V , either v ∈ S or a neighbor of v is in
S .

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find minimum weight dominating set in G
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Example: s-t minimum cut and implicit constraints

Input Graph G = (V ,E), edge capacities c(e), e ∈ E .
s, t ∈ V

Goal Find minimum capacity s-t cut in G .
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Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.

Then solving linear program is same as solving integer program. We
know how to solve linear programs efficiently (polynomial time) and
hence we get an integer solution for free!

Luck or Structure:
1 Linear program for flows with integer capacities have integer

vertices
2 Linear program for matchings in bipartite graphs have integer

vertices
3 A complicated linear program for matchings in general graphs

have integer vertices.

All of above problems can hence be solved efficiently.
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Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved
efficiently if and only if there is a linear program for problem with
integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations
such as convex programming are the most general problems that we
can solve efficiently.
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Summary

1 Linear Programming is a useful and powerful (modeling)
problem.

2 Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

3 Geometry and linear algebra are important to understand the
structure of LP and in algorithm design. Vertex solutions imply
that LPs have poly-sized optimum solutions. This implies that
LP is in NP.

4 Duality is a critical tool in the theory of linear programming.
Duality implies the Linear Programming is in co-NP. Do you
see why?

5 Integer Programming in NP-Complete. LP-based techniques
critical in heuristically solving integer programs.
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Part II

Reductions
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Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

2 We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)
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Example 1: Bipartite Matching and Flows

How do we solve the Bipartite Matching Problem?

Given a bipartite graph G = (U ∪ V ,E) and number k , does G
have a matching of size ≥ k?

Solution
Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a
flow from s to t of value ≥ k in the auxiliary graph G ′.
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Types of Problems

Decision, Search, and Optimization
1 Decision problem. Example: given n, is n prime?.

2 Search problem. Example: given n, find a factor of n if it
exists.

3 Optimization problem. Example: find the smallest prime
factor of n.
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Optimization and Decision problems
For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K , is there a
flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work
with the decision versions. Decision problems have Yes/No answers.
This makes them easy to work with.
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Problems vs Instances

1 A problem Π consists of an infinite collection of inputs
{I1, I2, . . . , }. Each input is referred to as an instance.

Example
Max-Flow is a problem. While a graph G with edge-capacities, two
vertices s, t, and an integer k constitutes an instance.

2 The size of an instance I is the number of bits in its
representation.

3 For an instance I , sol(I ) is a set of feasible solutions to I .

4 For optimization problems each solution s ∈ sol(I ) has an
associated value.
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Examples

Example
An instance of Bipartite Matching is a bipartite graph, and an
integer k . The solution to this instance is “YES” if the graph has a
matching of size ≥ k , and “NO” otherwise.

Example
An instance of Max-Flow is a graph G with edge-capacities, two
vertices s, t, and an integer k . The solution to this instance is
“YES” if there is a flow from s to t of value ≥ k , else ‘NO”.

What is an algorithm for a decision Problem X?
It takes as input an instance of X , and outputs either “YES” or
“NO”.
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Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y

3 =⇒ New algorithm for X :
AX (IX ):

// IX: instance of X.

IY ←R(IX )
return AY (IY )

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.
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Comparing hardness of problems

1 If Problem X reduces to Problem Y , written as X ≤ Y , then
X cannot be harder to solve than Y .

2 Bipartite Matching ≤ Max-Flow.
Bipartite Matching cannot be harder than Max-Flow.

3 Equivalently,
Max-Flow is at least as hard as Bipartite Matching.

4 X ≤ Y :
1 X is no harder than Y , or
2 Y is at least as hard as X .
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Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful. Reductions that take longer are not useful.

X ≤P Y : poly-time reduction from problem X to problem Y .

Then, polynomial-time algorithm AY for Y , gives an efficient
algorithm for X .

Ax

R AYIX IY YES

NO
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.
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Polynomial-time reductions and instance sizes

Proposition
Let A be a polynomial-time algorithm reducing X to Y . Then for
any instance IX of X , the size of the instance IY of Y produced from
IX by A is polynomial in the size of IX .

Proof.
A is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().

IY is the output of A on input IX .
A can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .

2 A runs in time polynomial in |IX |. This implies that |IY |
(size of IY ) is polynomial in |IX |.

3 Answer to IX YES iff answer to IY is YES.
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Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X ≤P Y . Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.
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Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Z you need to show a reduction FROM X TO Z
In other words show that an algorithm for Z implies an algorithm for
X .
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Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

Suppose Independent Set ≤P Clique.

If you believe that Independent Set does not have an efficient
algorithm, then can Clique have an efficient algorithm?

If Clique had an efficient algorithm, so would Independent Set!

So, NO!
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Using Reductions to show Hardness

We say that a problem is “hard” if there is no polynomial-time
algorithm known for it (and it is believed that such an algorithm does
not exist).

To show that Y is a hard problem:

Start with an existing “hard” problem X
Prove that X ≤P Y
Then we have shown that Y is a “hard” problem
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Examples of hard problems

Problems
1 SAT

2 3SAT

3 Independent Set and Clique

4 Vertex Cover

5 Set Cover

6 Hamilton Cycle

7 Knapsack and Subset Sum and Partition

8 Integer Programming

9 . . .
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Part III

Examples of Reductions
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Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .
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The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?
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Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k .
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Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k .

Convert G to G , in which (u, v) is an edge iff (u, v) is not an edge
of G . (G is the complement of G .)
Instance of Clique: graph G and integer k .
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Independent Set and Clique

1 Independent Set ≤P Clique.
What does this mean?

2 If we have an algorithm for Clique, then we have an algorithm
for Independent Set.

3 Clique is at least as hard as Independent Set.

4 Does Clique ≤P Independent Set?

YES!

Independent Set is at least as hard as Clique.
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Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Ruta (UIUC) CS473 37 Spring 2018 37 / 47



Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge (u, v) ∈ E . Is u or v in V \ S?
2 Since S is an independent set, either u 6∈ S or v 6∈ S .
3 Thus, either u ∈ V \ S or v ∈ V \ S .
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S . Is (u, v) ∈ E?
2 (u, v) /∈ E , as otherwise V \ S does not cover (u, v).
3 =⇒ S is thus an independent set.
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Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 Claim. G has an independent set of size ≥ k iff G has a vertex
cover of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore,
Independent Set ≤P Vertex Cover.
Also Vertex Cover ≤P Independent Set.
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The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U , and an integer k .

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover
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Vertex Cover ≤P Set Cover

Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.
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Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E .

3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.
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Vertex Cover ≤P Set Cover

Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E .

3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V
has a set cover of size k . (Exercise: Prove this.)
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Vertex Cover ≤P Set Cover: Example

1 2

3

4

56 a

g

c

f

e

b

d

{3, 6} is a vertex cover

Let U = {a, b, c, d , e, f , g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d , e} S4 = {e, f }
S5 = {a} S6 = {a, b, f , g}

{S3, S6} is a set cover
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Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .

2 Satisfies the property that answer to IX is YES iff IY is YES.
1 typical easy direction to prove: answer to IY is YES if answer to

IX is YES
2 typical difficult direction to prove: answer to IX is YES if

answer to IY is YES (equivalently answer to IY is NO if answer
to IX is NO).

3 Runs in polynomial time.
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Example of incorrect reduction proof

Try proving Matching ≤P Bipartite Matching via following
reduction:

1 Given graph G = (V ,E) obtain a bipartite graph
G ′ = (V ′,E ′) as follows.

1 Let V1 = {u1 | u ∈ V} and V2 = {u2 | u ∈ V}. We set
V ′ = V1 ∪ V2 (that is, we make two copies of V )

2 E ′ =
{
u1v2

∣∣∣ u 6= v and uv ∈ E
}

2 Given G and integer k the reduction outputs G ′ and k .
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“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G ′ has a matching of size k .

Proof.
Exercise.

Claim
If G ′ has a matching of size k then G has a matching of size k .

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G ′. A
matching in G ′ may use both copies!
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Subset sum and Partition?
Problem: Subset Sum

Instance: S - set of positive
integers,t: - an integer number
(target).
Question: Is there a subset
X ⊆ S such that

∑
x∈X x =

t?

Problem: Partition

Instance: A set S of n
numbers.
Question: Is there a sub-
set T ⊆ S s.t.

∑
t∈T t =∑

s∈S\T s?

Assume that we can solve Subset Sum in polynomial time, then we
can solve Partition in polynomial time. This statement is

(A) True.

(B) Mostly true.

(C) False.

(D) Mostly false.
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II: Partition and subset sum?
Problem: Partition
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numbers.
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