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Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A graph G = (V ,E) with edge costs c : E → R+.
Goal: Find a Hamiltonian Cycle of minimum total edge cost

Graph can be undirected or directed. Problem differs substantially.
We will first focus on undirected graphs.

Assumption for simplicity: Graph G = (V ,E) is a complete
graph. Can add missing edges with infinite cost to make graph
complete.

Observation: Once graph is complete there is always a Hamiltonian
cycle but only Hamiltonian cycles of finite cost are Hamiltonian cycles
in the original graph.
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Inapproximability of TSP

Observation: In the general setting TSP does not admit any
bounded approximation.

Finding or even deciding whether a graph G = (V ,E) has
Hamiltonian Cycle is NP-Hard

Hamiltonian Cycle ≤P (Approximate) TSP

Suppose, G = (V ,E) is a simple graph in which we want to
find a Hamiltonian cycle.
Construct a complete graph G ′ on vertices V , with cost 1 on
edges of G and∞ on all other edges.
If G has a Hamiltonian cycle then there is a TSP tour of cost n
in G ′, else the cost is∞.
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Important Special Cases

Metric-TSP: G = (V ,E) is a complete graph and c defines a
metric space. c(u, v) = c(v , u) for all u, v and
c(u,w) ≤ c(u, v) + c(v ,w) for all u, v ,w .

Geometric-TSP: V is a set of points in some Euclidean
d -dimensional space Rd and the distance between points is defined
by some norm such as standard Euclidean distance, L1/Manhatta
distance etc.
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Metric-TSP

Metric-TSP is simpler and perhaps a more natural problem in some
settings.

Theorem
Metric-TSP is NP-Hard.

Proof.

Given G = (V ,E) we create a new complete graph G ′ = (V ,E ′)
with the following costs. If e ∈ E cost c(e) = 1. If e ∈ E ′ − E
cost c(e) = 2. Easy to verify that c satisfies metric properties.
Moreover, G ′ has TSP tour of cost n iff G has a Hamiltonian
Cycle.
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Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V ,E) with
edges costs c , find a tour of minimum cost that visits all vertices but
can visit a vertex more than once – A closed walk.

Because, any such tour can be converted in to a simple cycle of
smaller cost by adding “short-cuts”.
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Approximation for Metric-TSP

MST-Heuristic(G = (V ,E), c)
Compute a minimum spanning tree (MST) T in G
Obtain an Eulerian graph H = 2T by doubling edges of T
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour
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Analyzing MST-Heuristic

Lemma
Let c(T ) =

∑
e∈T c(e) be cost of MST. We have c(T ) ≤ OPT .

Proof.
A TSP tour is a connected subgraph of G and MST is the cheapest
connected subgraph of G .

Theorem
MST-Heuristic gives a 2-approximation for Metric-TSP.

Proof.
Cost of tour is at most 2c(T ) and taking shortcuts only reduces the
cost due to triangle ineuqlity. Hence MST-Heuristic gives a
2-approximation.
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Question

Consider the subgraph induced by edges of a tour that visits every
vertex at least once (a closed walk). The degree of every vertex in
this subgraph is:

1 Even

2 Odd

3 Either

4 Integer

Euler Tour!
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Background on Eulerian graphs

Definition
An Euler tour of an undirected multigraph G = (V ,E) is a closed
walk that visits each edge exactly once. A graph is Eulerian if it has
an Euler tour.

Theorem (Euler)

An undirected multigraph G = (V ,E) is Eulerian iff G is connected
and every vertex degree is even.

Theorem
A directed multigraph G = (V ,E) is Eulerian iff G is weakly
connected and for each vertex v , indeg(v) = outdeg(v).
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Improved approximation for Metric-TSP

How can we improve the MST-heuristic?

Observation: Finding optimum TSP tour in G is same as finding
minimum cost Eulerian subgraph of G (allowing duplicate copies of
edges).

Christofides-Heuristic(G = (V ,E), c)
Compute a minimum spanning tree (MST) T in G
Add edges to T to make Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour

How do we add edges to make T Eulerian?
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Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V ,E), c)
Compute a minimum spanning tree (MST) T in G

Let S be vertices of odd degree in T (Note: |S| is even)

Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour
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Analysis of Christofides Heuristic

Main lemma:

Lemma
c(M) ≤ OPT/2.

Assuming lemma:

Theorem
Christofides heuristic returns a tour of cost at most 3OPT/2.

Proof.
c(H) = c(T ) + c(M) ≤ OPT + OPT/2 ≤ 3OPT/2. Cost of
tour is at most cost of H .
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Analysis of Christofides Heuristic

Lemma
Suppse G = (V ,E) is a metric and S ⊂ V be a subset of vertices.
Then there is a TSP tour in G [S] (the graph induced on S) of cost
at most OPT .

Proof.
Let C = v1, v2, . . . , vn, v1 be an optimum tour of cost OPT in G
and let S = {vi1, vi2, . . . , vik} where, without loss of generality
i1 < i2 . . . < ik . Then consider the tour C ′ = vi1, vi2, . . . , vik , vi1 in
G [S]. The cost of this tour is at most cost of C by shortcutting.

Ruta (UIUC) CS473 15 Spring 2018 15 / 25



Analysis of Christofides Heuristic

Lemma
Suppse G = (V ,E) is a metric and S ⊂ V be a subset of vertices.
Then there is a TSP tour in G [S] (the graph induced on S) of cost
at most OPT .

Proof.

Let C = v1, v2, . . . , vn, v1 be an optimum tour of cost OPT in G
and let S = {vi1, vi2, . . . , vik} where, without loss of generality
i1 < i2 . . . < ik . Then consider the tour C ′ = vi1, vi2, . . . , vik , vi1 in
G [S]. The cost of this tour is at most cost of C by shortcutting.

Ruta (UIUC) CS473 15 Spring 2018 15 / 25



Analysis of Christofides Heuristic

Lemma
Suppse G = (V ,E) is a metric and S ⊂ V be a subset of vertices.
Then there is a TSP tour in G [S] (the graph induced on S) of cost
at most OPT .

Proof.
Let C = v1, v2, . . . , vn, v1 be an optimum tour of cost OPT in G
and let S = {vi1, vi2, . . . , vik} where, without loss of generality
i1 < i2 . . . < ik . Then consider the tour C ′ = vi1, vi2, . . . , vik , vi1 in
G [S]. The cost of this tour is at most cost of C by shortcutting.

Ruta (UIUC) CS473 15 Spring 2018 15 / 25



Proof of lemma for Christofides heuristic

Lemma
c(M) ≤ OPT/2.

Recall that M is a matching on S the set of odd degree nodes in T .
Recall that |S| is even.

Proof.

From previous lemma, there is tour of cost OPT for S in G [S].
Wlog let this tour be v1, v2, . . . , v2k , v1 where
S = {v1, v2, . . . , v2k}. Consider two matchings Ma and Mb where
Ma = {(v1, v2), (v3, v4), . . . , (v2k−1, v2k) and
Mb = {(v2, v3), (v4, v5), . . . , (v2k , v1).
Ma ∪Mb is set of edges of tour so c(Ma) + c(Mb) ≤ OPT and
hence one of them has cost less than OPT/2.
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Other comments

Christofides heuristic has not been improved since 1976!
Major open problem in approximation algorithms.

For points in any fixed dimension d there is a polynomial-time
approximation scheme. For any fixed ε > 0 a tour of cost
(1 + ε)OPT can be computed in polynomial time. [Arora 1996,
Mitchell 1996].

Excellent practical code exists for solving large scale instances of TSP
that arise in several applications. See Concorde TSP Solver by
Applegate, Bixby, Chvatal, Cook.
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Directed Graphs and Asymmetric TSP (ATSP)

Question: What about directed graphs?

Equivalent of Metric-TSP is Asymmetric-TSP (ATSP)

Input is a complete directed graph G = (V ,E) with edge costs
c : E → R+.

Edge costs are not necessarily symmetric. That is c(u, v) can
be different from c(v , u)

Edge costs satisfy assymetric triangle inequality:
c(u,w) ≤ c(u, v) + c(v ,w) for all u, v ,w ∈ V .

Alternate interpretation: given directed graph G = (V ,E) find a
closed walk that visits all vertices (can visit a vertex more than once).
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ATSP

Alternate interpretation: given directed graph G = (V ,E) find a
closed walk that visits all vertices (can visit a vertex more than once).

Same as finding a minimum cost connected Eulerian subgraph of G .
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Approximation for ATSP

Harder than Metric-TSP

Simple log2 n approximation from 1980.

Improved to O(log n/ log log n)-approximation in 2010.

Further improved to O((log log n)c)-approximation in 2015.

Finally to c-approximation in 2018, where c = 5500!

Believed that the constant should be much smaller. Lower bound is 2
for LP relaxations.
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The O(log n) Approximation

Recall that a cycle cover is a collection of node disjoint cycles that
contain all nodes.

Question: How to find a minimum cost cycle cover?

Ans: Reduces to minimum cost bipartite matching!
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The O(log n) Approximation

Recall that a cycle cover is a collection of node disjoint cycles that
contain all nodes.

CycleShrinkingAlgorithm(G(V ,A), c : A→R+):

If |V | = 1 output the trivial cycle consisting of V
Find a minimum cost cycle cover with cycles C1, . . . ,Ck
From each Ci pick an arbitrary proxy node vi
Let S = {v1, v2, . . . , vk}
Recursively solve problem on G [S] to obtain a solution C
C ′ = C ∪ C1 ∪ C2 . . .Ck is a Eulerian graph.

Shortcut C ′ to obtain a cycle on V and output C ′.
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C ′ = C ∪ C1 ∪ C2 . . .Ck is a Eulerian graph.

Shortcut C ′ to obtain a cycle on V and output C ′.
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Illustration and Analysis
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Analysis: Lemmas

Lemma
Cost of a minimum cost cycle cover is at most OPT .

Lemma (Proved before)

Suppse G = (V ,E) is a directed graph with edge costs that
satisfies asymmetric triangle inequality and S ⊂ V be a subset of
vertices. Then there is a TSP tour in G [S] (the graph induced on S)
of cost at most OPT .

Lemma
The number of vertices shrinks by half in each iteration and hence
total of at most dlog ne cycle covers.

Hence total cost of all cycle covers is at most dlog ne · OPT .
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