CS 473: Algorithms

Chandra Chekuri Ruta Mehta

University of Illinois, Urbana-Champaign

Fall 2016

Basics of Discrete Probability

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, \Pr) consists of finite set Ω of **elementary events** and function $\mathbf{p} : \Omega \to [0, 1]$ which assigns a probability $\Pr[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, \Pr) consists of finite set Ω of **elementary events** and function $\mathbf{p} : \Omega \to [0, 1]$ which assigns a probability $\Pr[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Example

An unbiased coin. $\Omega = \{H, T\}$ and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\mathsf{Pr}[i]=1/6$ for $1\leq i\leq 6.$

And more examples

Example

A biased coin. $\Omega = \{H, T\}$ and Pr[H] = 2/3, Pr[T] = 1/3.

Example

Two independent unbiased coins. $\Omega = \{HH, TT, HT, TH\}$ and Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

Example

A pair of (highly) correlated dice.
$$\begin{split} \Omega &= \{(i,j) \mid 1 \leq i \leq 6, 1 \leq j \leq 6\}.\\ \mathsf{Pr}[i,i] &= 1/6 \text{ for } 1 \leq i \leq 6 \text{ and } \mathsf{Pr}[i,j] = 0 \text{ if } i \neq j. \end{split}$$

Events

Definition

Given a probability space (Ω, \Pr) an **event** is a subset of Ω . In other words an event is a collection of elementary events. The probability of an event **A**, denoted by $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$.

The **complement event** of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \overline{A} .

Example

A pair of independent dice. $\Omega = \{(i, j) \mid 1 \le i \le 6, 1 \le j \le 6\}.$

• Let A be the event that the sum of the two numbers on the dice is even. Then $A = \{(i, j) \in \Omega \mid (i + j) \text{ is even} \}$. Pr[A] = |A|/36 = 1/2.

• Let B be the event that the first die has 1. Then $B = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)\}.$ Pr[B] = 6/36 = 1/6.

Definition

Given a probability space (Ω, Pr) and two events **A**, **B** are independent if and only if $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are *dependent*. In other words **A**, **B** independent implies one does not affect the other.

Definition

Given a probability space (Ω, Pr) and two events A, B are independent if and only if $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are *dependent*. In other words A, B independent implies one does not affect the other.

Example

- Two coins. $\Omega = \{HH, TT, HT, TH\}$ and Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.
 - A is the event that the first coin is heads and B is the event that second coin is tails. A, B are independent.
 - A is the event that the two coins are different. B is the event that the second coin is heads. A, B independent.

Example

A is the event that both are not tails and **B** is event that second coin is heads. **A**, **B** are dependent.

Dependent or independent?

Consider two independent rolls of the dice.

- A = the event that the first roll is odd.
- **2** B = the event that the sum of the two rolls is odd.

The events **A** and **B** are

- (A) dependent.
- (B) independent.

Union bound

The probability of the union of two events, is no bigger than the probability of the sum of their probabilities.

Lemma

For any two events \mathcal{E} and \mathcal{F} , we have that $\Pr[\mathcal{E} \cup \mathcal{F}] \leq \Pr[\mathcal{E}] + \Pr[\mathcal{F}].$

Proof.

Consider ϵ and ${\mathcal F}$ to be a collection of elmentery events (which they are). We have

$$\begin{aligned} \mathsf{Pr}\Big[\mathcal{E} \cup \mathcal{F}\Big] &= \sum_{\mathsf{x} \in \mathcal{E} \cup \mathcal{F}} \mathsf{Pr}[\mathsf{x}] \\ &\leq \sum_{\mathsf{x} \in \mathcal{E}} \mathsf{Pr}[\mathsf{x}] + \sum_{\mathsf{x} \in \mathcal{F}} \mathsf{Pr}[\mathsf{x}] = \mathsf{Pr}\Big[\mathcal{E}\Big] + \mathsf{Pr}\Big[\mathcal{F}\Big] \,. \end{aligned}$$

Random Variables

Definition

Given a probability space (Ω, Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X : \Omega \to \mathbb{R}$.

Random Variables

Definition

Given a probability space (Ω, Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X : \Omega \to \mathbb{R}$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\mathsf{Pr}[i]=1/6$ for $1\leq i\leq 6.$

- $X : \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$.
- **2** $\mathbf{Y} : \Omega \to \mathbb{R}$ where $\mathbf{Y}(\mathbf{i}) = \mathbf{i}^2$.

Expectation

Definition

For a random variable X over a probability space (Ω, \mathbf{Pr}) the **expectation** of X is defined as $\sum_{\omega \in \Omega} \mathbf{Pr}[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\mathbf{Pr}[\cdot]$.

Expectation

Definition

For a random variable X over a probability space (Ω, Pr) the **expectation** of X is defined as $\sum_{\omega \in \Omega} \Pr[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\Pr[\cdot]$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\mathsf{Pr}[i]=1/6$ for $1\leq i\leq 6.$

 $\textcircled{\ }X:\Omega \rightarrow \mathbb{R} \text{ where } X(i)=i \ \text{ mod } 2. \text{ Then } E[X]=1/2.$

2
$$\mathbf{Y}: \Omega \to \mathbb{R}$$
 where $\mathbf{Y}(\mathbf{i}) = \mathbf{i}^2$. Then $\mathbf{E}[\mathbf{Y}] = \sum_{i=1}^{6} \frac{1}{6} \cdot \mathbf{i}^2 = 91/6$.

Expected number of vertices?

Let G = (V, E) be a graph with **n** vertices and **m** edges. Let H be the graph resulting from independently deleting every vertex of G with probability 1/2. The expected number of vertices in H is

(A) n/2.
(B) n/4.
(C) m/2.
(D) m/4.
(E) none of the above.

Let G = (V, E) be a graph with **n** vertices and **m** edges. Let H be the graph resulting from independently deleting every vertex of G with probability 1/2. The expected number of edges in H is

(A) n/2.
(B) n/4.
(C) m/2.
(D) m/4.
(E) none of the above.

Indicator Random Variables

Definition

A binary random variable is one that takes on values in $\{0, 1\}$.

Indicator Random Variables

Definition

A binary random variable is one that takes on values in $\{0, 1\}$.

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, \Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \notin A$.

Indicator Random Variables

Definition

A binary random variable is one that takes on values in $\{0, 1\}$.

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, \Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \notin A$.

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for $1 \le i \le 6$. Let A be the even that i is divisible by 3. Then $X_A(i) = 1$ if i = 3, 6 and 0 otherwise.

Expectation

Proposition

For an indicator variable X_A , $E[X_A] = Pr[A]$.

Proof.

$$\begin{split} \mathsf{E}[\mathsf{X}_\mathsf{A}] &= \sum_{\mathsf{y} \in \Omega} \mathsf{X}_\mathsf{A}(\mathsf{y}) \, \mathsf{Pr}[\mathsf{y}] \\ &= \sum_{\mathsf{y} \in \mathsf{A}} \mathbf{1} \cdot \mathsf{Pr}[\mathsf{y}] + \sum_{\mathsf{y} \in \Omega \setminus \mathsf{A}} \mathbf{0} \cdot \mathsf{Pr}[\mathsf{y}] \\ &= \sum_{\mathsf{y} \in \mathsf{A}} \mathsf{Pr}[\mathsf{y}] \\ &= \mathsf{Pr}[\mathsf{A}] \,. \end{split}$$

Linearity of Expectation

Lemma

Let X, Y be two random variables (not necessarily independent) over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Proof. $E[X + Y] = \sum_{\omega \in \Omega} \Pr[\omega] (X(\omega) + Y(\omega))$ $= \sum_{\omega \in \Omega} \Pr[\omega] X(\omega) + \sum_{\omega \in \Omega} \Pr[\omega] Y(\omega) = E[X] + E[Y].$

Linearity of Expectation

Lemma

Let X, Y be two random variables (not necessarily independent) over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Let G = (V, E) be a graph with **n** vertices and **m** edges. Let H be the graph resulting from independently deleting every vertex of G with probability 1/2. The expected number of edges in H is

(A) n/2.
(B) n/4.
(C) m/2.
(D) m/4.
(E) none of the above.

Expected number of triangles?

Let G = (V, E) be a graph with **n** vertices and **m** edges. Assume G has **t** triangles (i.e., a triangle is a simple cycle with three vertices). Let H be the graph resulting from deleting independently each vertex of G with probability 1/2. The expected number of triangles in H is

(A) t/2.
(B) t/4.
(C) t/8.
(D) t/16.
(E) none of the

(E) none of the above.