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Topics

Included topics:
Dynamic Programming.
Shortest paths in graphs including negative lengths and negative
cycle detection (Bellman Ford).
Basics of randomization.
Network flows and applications to mincuts, matching, assignment
problems, disjoint paths.
Basics of LP, modeling, writing a dual of an LP.
Reductions and NP-Completeness.
Basics of approximation.

Omitted topics:
FFT and applications.
Advanced topics in randomization including hashing, streaming,
finger printing, string matching.
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We will review

Basics of LP, modeling, writing a dual of an LP

Reductions and NP-Completeness.

Basics of approximation.
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Part I

Linear Programming
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Linear Programs

Problem
Find a vector x ∈ Rd that

maximize/minimize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . p∑d
j=1 aijxj = bi for i = p + 1 . . . q∑d
j=1 aijxj ≥ bi for i = q + 1 . . . n

Input is matrix A = (aij) ∈ Rn×d , column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd
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Canonical Form of Linear Programs

Canonical Form
A linear program is in canonical form if it has the following structure

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Conversion to Canonical Form
1 Replace

∑
j aijxj = bi by∑
j

aijxj ≤ bi and −
∑

j

aijxj ≤ −bi

2 Replace
∑

j aijxj ≥ bi by −
∑

j aijxj ≤ −bi
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Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize c · x
subject to Ax ≤ b

where A = (aij) ∈ Rn×d , column vector b = (bi) ∈ Rn, row vector
c = (cj) ∈ Rd , and column vector x = (xj) ∈ Rd

1 Number of variable is d
2 Number of constraints is n
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Feasible Region and Convexity

Canonical Form
Given A ∈ Rn×d , b ∈ Rn×1 and c ∈ R1×d , find x ∈ Rd×1

max : c · x
s.t. Ax ≤ b

1 Each linear constraint defines a halfspace, a convex set.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Optimal value attained at a vertex of the polyhedron.

4 Simplex method: starting at a vertex, moves to a neighbor
where objective improves. Stops if no such neighbor.
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Dual Linear Program

Given a linear program Π in canonical form

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n

the dual Dual(Π) is given by

minimize
∑n

i=1 biyi
subject to

∑n
i=1 yiaij = cj j = 1, 2, . . . d

yi ≥ 0 i = 1, 2, . . . n

Proposition

Dual(Dual(Π)) is equivalent to Π
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Dual Linear Program
Succinct representation..

Given a A ∈ Rn×d , b ∈ Rn and c ∈ Rd , linear program Π

maximize c · x
subject to Ax ≤ b

the dual Dual(Π) is given by

minimize y · b
subject to yA = c

y ≥ 0

Proposition

Dual(Dual(Π)) is equivalent to Π
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Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution to
Dual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced from
duality.
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Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in Π and y feasible in Dual(Π), s.t.,
∀i = 1..n, yi > 0 ⇒ (Ax)i = bi

Theorem
(x∗, y∗) satisfies complementary Slackness if and only if strong
duality holds, i.e., c · x∗ = y∗ · b.

Proof using Farka’s Lemma: Given a set of vectors A1, . . . ,An, and
a vector c , either c is inside the cone(A1, . . . ,An) or outside it.

Either ∃y ≥ 0 such that yTA = c or ∃x such that Ax ≤ 0 and
c · x > 0.
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Example

Given a graph G = (V ,E), write an LP and its dual to find a
minimum perfect matching.
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Example

Consider the load balancing problem: The input consists of n jobs
J1, . . . , Jn and an integer m denoting the number of machines. The
size of Ji is a non-negative number si . The goal is to assign the jobs
to machines to minimize the makespan (the largest load of any
machine).

Describe an integer programming formulation for the problem.
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Example Contd.

Describe the dual of the LP relaxation of the integer program.
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Part II

NP-Completeness
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Types of Problems

Decision, Search, and Optimization
1 Decision problem. Example: given n, is n prime?.

2 Search problem. Example: given n, find a factor of n if it
exists.

3 Optimization problem. Example: find the smallest prime
factor of n.

We focus on Decision Problems.
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Polynomial Time Reduction
Karp reduction

X ≤P Y : algorithm A reduces problem X to problem Y in
polynomial-time:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time poly(|IX |)⇒ |IY | = poly(|IX |)
3 Answer to IX YES iff answer to IY is YES.

Consequences:

poly-time algorithm for Y ⇒ poly-time algorithm for X .

X is “hard”⇒ Y is “hard”.

Note. X ≤P Y 6=⇒ Y ≤P X
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Problems with no known polynomial time

algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.
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Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if for every Ix ∈ X
there is some string t such that C(Ix , t) = ”yes”, and conversely, if
for some Ix and t, C(Ix , t) = ”yes” then Ix ∈ X .
The string t is called a certificate or proof for s.
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Example: Independent Set

1 Problem: Does G = (V ,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.
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Class NP

NP: languages/problems that have polynomial time certifiers/verifiers

A problem X is NP-Complete iff

X is in NP

X is NP-Hard.

X is NP-Hard if for every Y in NP, Y ≤P X .

Theorem (Cook-Levin)

SAT is NP-Complete.
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Class NP contd

Theorem (Cook-Levin)

SAT is NP-Complete.

Establish NP-Completeness via reductions:

1 SAT is NP-Complete.
2 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
3 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
4 Clique is NP-Complete
5 Vertex Cover is NP-Complete
6 Set Cover is NP-Complete
7 Hamilton Cycle and Hamiltonian Path are NP-Complete
8 3-Color is NP-Complete
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Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Consequence of proving NP-Completeness
If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)
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3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.

Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.
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Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 28 Spring 2018 28 / 49



Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 28 Spring 2018 28 / 49



Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 28 Spring 2018 28 / 49



Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 28 Spring 2018 28 / 49



The Reduction

1 Gϕ will have one vertex for each literal in a clause

2 Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)
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Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size
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Correctness (contd)

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting clauses
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause
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Example – Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian
cycle or not and a graph G , find a Hamiltonian cycle in G .
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Part III

Approximation Algorithms
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What is an approximation algorithm?

An algorithm A for an optimization problem X is an
α-approximation algorithm if the following conditions hold:

for each instance I of X the algorithm A correctly outputs a
valid solution to I
A is a polynomial-time algorithm

Letting OPT (I ) and A(I ) denote the values of an optimum
solution and the solution output by A on instances I ,

If X is a minimization problem: A(I )/OPT (I ) ≤ α
If X is a maximization problem: OPT (I )/A(I ) ≤ α

Definition ensures that α ≥ 1

To be formal we need to say α(n) where n = |I | since in some cases
the approximation ratio depends on the size of the instance.
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We saw

2 approximation for vertex cover – LP rounding

2(1− 1/m) and 3/2 approximation for the Load Balancing
problem, where m is number of machines.

log n approximation for setcover

3/2 approximation for undirected TSP

log n approximation for directed TSP
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Load Balancing

Given n jobs J1, J2, . . . , Jn with sizes s1, s2, . . . , sn and m identical
machines M1, . . . ,Mm assign jobs to machines to minimize
maximum load (also called makespan).

Formally, an assignment is a mapping
f : {1, 2, . . . , n} → {1, . . . ,m}.

The load `f (j) of machine Mj under f is
∑

i :f (i)=j si

Goal is to find f to minimize maxj `f (j).
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Greedy List Scheduling

List-Scheduling
Let J1, J2, . . . , Jn be an ordering of jobs

for i = 1 to n do

Schedule job Ji on the currently least loaded machine

OPT is the optimum load

Lower bounds on OPT:

average load: OPT ≥
∑n

i=1 si/m. Why?

maximum job size: OPT ≥ maxn
i=1 si . Why?
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Analysis of Greedy List Scheduling

Theorem
Let L be makespan of Greedy List Scheduling on a given instance.
Then L ≤ 2(1− 1/m)OPT where OPT is the optimum
makespan for that instance.

Let Mh be the machine which achieves the load L for Greedy
List Scheduling.

Let Ji be the job that was last scheduled on Mh.

Why was Ji scheduled on Mh? It means that Mh was the least
loaded machine when Ji was considered. Implies all machines
had load at least L− si at that time.
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Why was Ji scheduled on Mh? It means that Mh was the least
loaded machine when Ji was considered. Implies all machines
had load at least L− si at that time.
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Analysis continued

Lemma

L− si ≤ (
∑i−1

`=1 s`)/m.

But then

L ≤ (
i−1∑
`=1

s`)/m + si

≤ (
n∑

`=1

s`)/m + (1−
1

m
)si

≤ OPT + (1−
1

m
)OPT

≤ (2−
2

m
)OPT

= 2(1−
1

m
)OPT .
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Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

s1 ≥ s2 ≥ · · · ≥ sn

Does it lead to an improved performance in the worst case? How
much?

Theorem
Greedy List Scheduling with jobs sorted from largest to smallest gives
a 3/2-approximation and this is essentially tight.

New lower bound: sm + sm+1 ≤ OPT .
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Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A (un)directed complete graph G = (V ,E) with edge costs
c : E → R+.
Goal: Find a Hamiltonian Cycle of minimum total edge cost

Observation: Inapproximable to any polynomial factor.

Metric-TSP: G = (V ,E) is a complete graph and c defines a
metric space. c(u, v) = c(v , u) for all u, v and
c(u,w) ≤ c(u, v) + c(v ,w) for all u, v ,w .

Theorem
Metric-TSP is NP-Hard.
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Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V ,E) with
edges costs c , find a tour of minimum cost that visits all vertices but
can visit a vertex more than once – A closed walk.

Because, any such tour can be converted in to a simple cycle of
smaller cost by adding “short-cuts”.

Essentially need to find an Eulerian graph.
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Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V ,E), c)
Compute a minimum spanning tree (MST) T in G

Let S be vertices of odd degree in T (Note: |S| is even)

Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour
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Analysis of Christofides Heuristic

Main lemma:

Lemma
c(M) ≤ OPT/2.

Assuming lemma:

Theorem
Christofides heuristic returns a tour of cost at most 3OPT/2.

Proof.
c(H) = c(T ) + c(M) ≤ OPT + OPT/2 ≤ 3OPT/2. Cost of
tour is at most cost of H .
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Example – Randomized Approximation Scheme

Consider the LP relaxation for Set Cover. Let xi be the variable in
the relaxation for set Si . Suppose x∗ is an optimum solution to the
LP relaxation. Define yi = min{1, 2 ln n · x∗

i } for each set Si . Pick
each set Si independently with probability yi .

Prove that the expected weight of the sets chosen is at most
2 ln n · OPT .
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Contd.

Prove that the probability that any fixed element in the universe is
not covered by the chosen sets is at most 1/n2.
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Contd.

Prove that, with probability at least 1− 1/n all the elements of the
universe are covered by the chosen sets. Hint: Use union bound.
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Contd.

Prove that with probability 1/2− 1/n the algorithm outputs a set
cover for the universe whose weight at most 4 ln n · OPT where
OPT is the weight of an optimum Set Cover. Hint: Use Markov’s
inequality.
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