CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign
Spring 2018

CS 473: Algorithms, Spring 2018

Review session

Lecture 99
May 9, 2018

Topics

Included topics:

Dynamic Programming.
Shortest paths in graphs including negative lengths and negative cycle detection (Bellman Ford).
Basics of randomization.
Network flows and applications to mincuts, matching, assignment problems, disjoint paths.
Basics of LP, modeling, writing a dual of an LP.
Reductions and NP-Completeness.
Basics of approximation.

Omitted topics:

FFT and applications.
Advanced topics in randomization including hashing, streaming, finger printing, string matching.

We will review

- Basics of LP, modeling, writing a dual of an LP
- Reductions and NP-Completeness.
- Basics of approximation.

Part I

Linear Programming

Linear Programs

Problem

Find a vector $x \in \mathbb{R}^{\boldsymbol{d}}$ that

$$
\begin{array}{ll}
\text { maximize/minimize } & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d=1} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1 \ldots p \\
& \sum_{j=1}^{d} a_{i j} x_{j}=b_{i} \quad \text { for } i=p+1 \ldots q \\
& \sum_{j=1}^{d=1} a_{i j} x_{j} \geq b_{i} \quad \text { for } i=q+1 \ldots n
\end{array}
$$

Linear Programs

Problem

Find a vector $x \in \mathbb{R}^{\boldsymbol{d}}$ that

$$
\begin{array}{ll}
\text { maximize/minimize } & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1 \ldots p \\
& \sum_{j=1}^{d} a_{i j} x_{j}=b_{i} \quad \text { for } i=p+1 \ldots q \\
& \sum_{j=1}^{d} a_{i j} x_{j} \geq b_{i} \quad \text { for } i=q+1 \ldots n
\end{array}
$$

Input is matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{\boldsymbol{n \times d}}$, column vector $b=\left(b_{i}\right) \in \mathbb{R}^{\boldsymbol{n}}$, and row vector $c=\left(c_{j}\right) \in \mathbb{R}^{\boldsymbol{d}}$

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1 \ldots n
\end{array}
$$

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1 \ldots n
\end{array}
$$

Conversion to Canonical Form

(1) Replace $\sum_{j} a_{i j} x_{j}=b_{i}$ by

$$
\sum_{j} a_{i j} x_{j} \leq b_{i} \quad \text { and } \quad-\sum_{j} a_{i j} x_{j} \leq-b_{i}
$$

(2) Replace $\sum_{j} a_{i j} x_{j} \geq b_{i}$ by $-\sum_{j} a_{i j} x_{j} \leq-b_{i}$

Matrix Representation of Linear Programs

A linear program in canonical form can be written as

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{c} \cdot \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} x \leq b
\end{array}
$$

where $\boldsymbol{A}=\left(a_{i j}\right) \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{d}}$, column vector $\boldsymbol{b}=\left(b_{i}\right) \in \mathbb{R}^{\boldsymbol{n}}$, row vector $c=\left(c_{j}\right) \in \mathbb{R}^{\boldsymbol{d}}$, and column vector $x=\left(x_{j}\right) \in \mathbb{R}^{\boldsymbol{d}}$
(1) Number of variable is d
(2) Number of constraints is n

Feasible Region and Convexity

Canonical Form

Given $A \in R^{n \times d}, b \in R^{n \times 1}$ and $c \in R^{1 \times d}$, find $x \in R^{d \times 1}$

$$
\begin{array}{ll}
\max : & c \cdot x \\
\text { s.t. } & A x \leq b
\end{array}
$$

(1) Each linear constraint defines a halfspace, a convex set.
(2) Feasible region, which is an intersection of halfspaces, is a convex polyhedron.
(3) Optimal value attained at a vertex of the polyhedron.
(4) Simplex method: starting at a vertex, moves to a neighbor where objective improves. Stops if no such neighbor.

Dual Linear Program

Given a linear program $\boldsymbol{\Pi}$ in canonical form

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad i=1,2, \ldots n
\end{array}
$$

the dual $\operatorname{Dual}(\Pi)$ is given by

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i=1}^{n} b_{i} y_{i} & \\
\text { subject to } & \sum_{i=1}^{n} y_{i} a_{i j}=c_{j} & j=1,2, \ldots d \\
& y_{i} \geq 0 & i=1,2, \ldots n
\end{array}
$$

Dual Linear Program

Given a linear program $\boldsymbol{\Pi}$ in canonical form

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad i=1,2, \ldots n
\end{array}
$$

the dual $\operatorname{Dual}(\Pi)$ is given by

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i=1}^{n} b_{i} y_{i} \\
\text { subject to } & \sum_{i=1}^{n} y_{i} a_{i j}=c_{j} & j=1,2, \ldots d \\
& y_{i} \geq 0 & i=1,2, \ldots n
\end{array}
$$

Proposition

Dual(Dual(П)) is equivalent to $\boldsymbol{\Pi}$

Dual Linear Program

Succinct representation..

Given a $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{d}}, \boldsymbol{b} \in \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{c} \in \mathbb{R}^{\boldsymbol{d}}$, linear program $\boldsymbol{\Pi}$

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{c} \cdot \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

the dual Dual (Π) is given by

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{y} \cdot \boldsymbol{b} \\
\text { subject to } & y \boldsymbol{A}=\boldsymbol{c} \\
& y \geq \mathbf{0}
\end{array}
$$

Proposition

Dual(Dual(П)) is equivalent to Π

Duality Theorem

Theorem (Weak Duality)

If \boldsymbol{x} is a feasible solution to Π and \boldsymbol{y} is a feasible solution to Dual(П) then $c \cdot x \leq y \cdot b$.

Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to Dual(П) then $c \cdot x \leq y \cdot b$.

Theorem (Strong Duality)

If \boldsymbol{x}^{*} is an optimal solution to Π and \boldsymbol{y}^{*} is an optimal solution to Dual(П) then $c \cdot x^{*}=y^{*} \cdot \boldsymbol{b}$.

Many applications! Maxflow-Mincut theorem can be deduced from duality.

Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in Π and y feasible in $\operatorname{Dual}(\Pi)$, s.t.,

$$
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
$$

Theorem
$\left(x^{*}, y^{*}\right)$ satisfies complementary Slackness if and only if strong duality holds, i.e., $\boldsymbol{c} \cdot \boldsymbol{x}^{*}=\boldsymbol{y}^{*} \cdot \boldsymbol{b}$.

Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

\boldsymbol{x} feasible in $\boldsymbol{\Pi}$ and \boldsymbol{y} feasible in $\operatorname{Dual(\boldsymbol {\Pi })\text {,s.t.,}}$

$$
\forall i=1 . . n, \quad y_{i}>0 \Rightarrow(A x)_{i}=b_{i}
$$

Theorem

(x^{*}, y^{*}) satisfies complementary Slackness if and only if strong duality holds, i.e., $c \cdot x^{*}=y^{*} \cdot b$.

Proof using Farka's Lemma: Given a set of vectors $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$, and a vector \boldsymbol{c}, either \boldsymbol{c} is inside the $\boldsymbol{\operatorname { c o n e }}\left(\boldsymbol{A}_{\mathbf{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}\right)$ or outside it. Either $\exists y \geq 0$ such that $y^{\top} A=c$ or $\exists x$ such that $A x \leq 0$ and $c \cdot x>0$.

Example

Given a graph $G=(V, E)$, write an LP and its dual to find a minimum perfect matching.

Example

Consider the load balancing problem: The input consists of \boldsymbol{n} jobs J_{1}, \ldots, J_{n} and an integer m denoting the number of machines. The size of $J_{\boldsymbol{i}}$ is a non-negative number $s_{\boldsymbol{i}}$. The goal is to assign the jobs to machines to minimize the makespan (the largest load of any machine).

- Describe an integer programming formulation for the problem.

Example Contd.

Describe the dual of the LP relaxation of the integer program.

Part II

NP-Completeness

Types of Problems

Decision, Search, and Optimization

(1) Decision problem. Example: given \boldsymbol{n}, is \boldsymbol{n} prime?
(2) Search problem. Example: given \boldsymbol{n}, find a factor of \boldsymbol{n} if it exists.
(3) Optimization problem. Example: find the smallest prime factor of n.

We focus on Decision Problems.

Polynomial Time Reduction

Karp reduction

$X \leq_{p} Y:$ algorithm \mathcal{A} reduces problem \boldsymbol{X} to problem \boldsymbol{Y} in polynomial-time:
(1) given an instance I_{X} of $\boldsymbol{X}, \mathcal{A}$ produces an instance I_{Y} of \boldsymbol{Y}
(2) \mathcal{A} runs in time poly $\left(\left|I_{X}\right|\right) \Rightarrow\left|I_{Y}\right|=\operatorname{poly}\left(\left|I_{X}\right|\right)$
(0) Answer to I_{X} YES iff answer to I_{Y} is YES.

Polynomial Time Reduction

Karp reduction

$\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: algorithm \mathcal{A} reduces problem \boldsymbol{X} to problem \boldsymbol{Y} in polynomial-time:
(1) given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance I_{Y} of \boldsymbol{Y}
(2) \mathcal{A} runs in time poly $\left(\left|I_{X}\right|\right) \Rightarrow\left|I_{Y}\right|=\operatorname{poly}\left(\left|I_{X}\right|\right)$
(3) Answer to I_{X} YES iff answer to I_{Y} is YES.

Consequences:

- poly-time algorithm for $\boldsymbol{Y} \Rightarrow$ poly-time algorithm for \boldsymbol{X}.
- \boldsymbol{X} is "hard" $\Rightarrow Y$ is "hard".

Polynomial Time Reduction

Karp reduction

$\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: algorithm \mathcal{A} reduces problem \boldsymbol{X} to problem \boldsymbol{Y} in polynomial-time:
(1) given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of Y
(2) \mathcal{A} runs in time poly $\left(\left|I_{X}\right|\right) \Rightarrow\left|I_{Y}\right|=\operatorname{poly}\left(\left|I_{X}\right|\right)$
(3) Answer to I_{X} YES iff answer to I_{Y} is YES.

Consequences:

- poly-time algorithm for $\boldsymbol{Y} \Rightarrow$ poly-time algorithm for \boldsymbol{X}.
- \boldsymbol{X} is "hard" $\Rightarrow Y$ is "hard".

Note. $X \leq_{P} Y \quad \not \quad Y \leq_{P} X$

Problems with no known polynomial time algorithms

Problems

(1) Independent Set
(2) Vertex Cover
(3) Set Cover

- SAT
© 3SAT
There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any $Y E S$ instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} there is a proof/certificate/solution that is of length poly $\left(\left|I_{\boldsymbol{X}}\right|\right)$ such that given a proof one can efficiently check that $\boldsymbol{I}_{\mathbf{x}}$ is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} there is a proof/certificate/solution that is of length poly $\left(\left|I_{\boldsymbol{X}}\right|\right)$ such that given a proof one can efficiently check that $\boldsymbol{I}_{\mathbf{x}}$ is indeed a YES instance.

Examples:
(1) SAT formula φ : proof is a satisfying assignment.
(2) Independent Set in graph G and k :

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} there is a proof/certificate/solution that is of length poly $\left(\left|I_{\boldsymbol{X}}\right|\right)$ such that given a proof one can efficiently check that $\boldsymbol{I}_{\mathbf{x}}$ is indeed a YES instance.

Examples:
(1) SAT formula φ : proof is a satisfying assignment.
(2) Independent Set in graph G and k : a subset S of vertices.

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if for every $I_{x} \in X$ there is some string t such that $C\left(I_{x}, t\right)=$ "yes", and conversely, if for some I_{x} and $t, C\left(I_{x}, t\right)=$ "yes" then $I_{x} \in X$. The string t is called a certificate or proof for \boldsymbol{s}.

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if for every $I_{x} \in X$ there is some string t such that $C\left(I_{x}, t\right)=$ "yes", and conversely, if for some I_{x} and $t, C\left(I_{x}, t\right)=$ "yes" then $I_{x} \in X$.
The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem \boldsymbol{X} if there is a polynomial $p(\cdot)$ such that for every string s, we have that
$\star I_{x} \in X$ if and only if
\star there is a string t :
(1) $|\boldsymbol{t}| \leq \boldsymbol{p}\left(\left|I_{x}\right|\right)$,
(2) $C\left(I_{x}, t\right)=$ "yes",
(3) and \boldsymbol{C} runs in polynomial time in $\left|\boldsymbol{I}_{\boldsymbol{x}}\right|$.

Example: Independent Set

(1) Problem: Does $G=(V, E)$ have an independent set of size $\geq k$?
(1) Certificate: Set $\boldsymbol{S} \subseteq \boldsymbol{V}$.
(2) Certifier: Check $|\boldsymbol{S}| \geq \boldsymbol{k}$ and no pair of vertices in \boldsymbol{S} is connected by an edge.

Class NP

NP: languages/problems that have polynomial time certifiers/verifiers
A problem X is NP-Complete iff

- \boldsymbol{X} is in NP
- \boldsymbol{X} is NP-Hard.
\boldsymbol{X} is NP-Hard if for every \boldsymbol{Y} in NP, $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$.

Theorem (Cook-Levin) SAT is NP-Complete.

Class NP contd

Theorem (Cook-Levin)

 SAT is NP-Complete.Establish NP-Completeness via reductions:
(1) SAT is NP-Complete.
(2) SAT \leq_{P} 3-SAT and hence 3-SAT is NP-Complete.
(3) 3-SAT \leq_{P} Independent Set (which is in NP) and hence Independent Set is NP-Complete.
(4) Clique is NP-Complete
(5) Vertex Cover is NP-Complete
(0) Set Cover is NP-Complete
(3) Hamilton Cycle and Hamiltonian Path are NP-Complete
(8) 3-Color is NP-Complete

Solving NP-Complete Problems

Proposition

Suppose \boldsymbol{X} is NP-Complete. Then \boldsymbol{X} can be solved in polynomial time if and only if $\mathrm{P}=\mathrm{NP}$.

Consequence of proving NP-Completeness If X is NP-Complete
(1) Since we believe $\mathrm{P} \neq \mathrm{NP}$,
(2) and solving X implies $\mathrm{P}=\mathrm{NP}$.
\boldsymbol{X} is unlikely to be efficiently solvable.

Solving NP-Complete Problems

Proposition

Suppose \boldsymbol{X} is NP-Complete. Then \boldsymbol{X} can be solved in polynomial time if and only if $\mathrm{P}=\mathrm{NP}$.

Consequence of proving NP-Completeness If X is NP-Complete
(1) Since we believe $\mathrm{P} \neq \mathrm{NP}$,
(2) and solving X implies $\mathrm{P}=\mathrm{NP}$.
\boldsymbol{X} is unlikely to be efficiently solvable.

Solving NP-Complete Problems

Proposition

Suppose \boldsymbol{X} is NP-Complete. Then \boldsymbol{X} can be solved in polynomial time if and only if $\mathrm{P}=\mathrm{NP}$.

Consequence of proving NP-Completeness

 If X is NP-Complete(1) Since we believe $\mathrm{P} \neq \mathrm{NP}$,
(2) and solving X implies $\mathrm{P}=\mathrm{NP}$.
\boldsymbol{X} is unlikely to be efficiently solvable.
At the very least, many smart people before you have failed to find an efficient algorithm for \boldsymbol{X}.
(This is proof by mob opinion - take with a grain of salt.)

3SAT $\leq \mathrm{p}$ Independent Set

The reduction 3 SAT \leq_{p} Independent Set

Input: Given a 3CNF formula φ
Goal: Construct a graph \boldsymbol{G}_{φ} and number k such that \boldsymbol{G}_{φ} has an independent set of size \boldsymbol{k} if and only if φ is satisfiable.

3 SAT \leq_{p} Independent Set

The reduction 3 SAT \leq_{p} Independent Set

Input: Given a 3CNF formula φ
Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

3 SAT \leq_{p} Independent Set

The reduction 3 SAT \leq_{p} Independent Set

Input: Given a 3 CNF formula φ
Goal: Construct a graph G_{φ} and number \boldsymbol{k} such that G_{φ} has an independent set of size \boldsymbol{k} if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Interpreting 3SAT

There are two ways to think about 3SAT

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
(2) Pick a literal from each clause and find a truth assignment to make all of them true

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
(2) Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_{i} and $\neg x_{i}$
We will take the second view of 3SAT to construct the reduction.

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(0) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(9) Take k to be the number of clauses

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

Correctness

Proposition

φ is satisfiable iff G_{φ} has an independent set of size \boldsymbol{k} (= number of clauses in φ).

Proof.

\Rightarrow Let a be the truth assignment satisfying φ

Correctness

Proposition

φ is satisfiable iff G_{φ} has an independent set of size \boldsymbol{k} (= number of clauses in φ).

Proof.

\Rightarrow Let a be the truth assignment satisfying φ
(1) Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Correctness (contd)

Proposition

φ is satisfiable iff G_{φ} has an independent set of size \boldsymbol{k} (= number of clauses in φ).

Proof.

\Leftarrow Let S be an independent set of size k
(1) S must contain exactly one vertex from each clause
(2) S cannot contain vertices labeled by conflicting clauses
(3) Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Example - Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian cycle or not and a graph \boldsymbol{G}, find a Hamiltonian cycle in \boldsymbol{G}.

Example - Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian cycle or not and a graph \boldsymbol{G}, find a Hamiltonian cycle in \boldsymbol{G}.

Part III

Approximation Algorithms

What is an approximation algorithm?

An algorithm \mathcal{A} for an optimization problem \boldsymbol{X} is an α-approximation algorithm if the following conditions hold:

- for each instance \boldsymbol{I} of \boldsymbol{X} the algorithm \mathcal{A} correctly outputs a valid solution to I
- \mathcal{A} is a polynomial-time algorithm
- Letting $O P T(I)$ and $\mathcal{A}(I)$ denote the values of an optimum solution and the solution output by \mathcal{A} on instances I,
- If \boldsymbol{X} is a minimization problem: $\mathcal{A}(I) / O P T(I) \leq \alpha$
- If X is a maximization problem: $\operatorname{OPT}(I) / \mathcal{A}(I) \leq \alpha$

Definition ensures that $\alpha \geq \mathbf{1}$
To be formal we need to say $\boldsymbol{\alpha}(\boldsymbol{n})$ where $\boldsymbol{n}=|\||$ since in some cases the approximation ratio depends on the size of the instance.

We saw

- 2 approximation for vertex cover - LP rounding
- 2(1-1/m) and $3 / 2$ approximation for the Load Balancing problem, where \boldsymbol{m} is number of machines.
- $\log n$ approximation for setcover
- 3/2 approximation for undirected TSP
- $\log n$ approximation for directed TSP

Load Balancing

Given n jobs $J_{1}, J_{2}, \ldots, J_{n}$ with sizes $s_{1}, s_{2}, \ldots, s_{\boldsymbol{n}}$ and m identical machines M_{1}, \ldots, M_{m} assign jobs to machines to minimize maximum load (also called makespan).

Formally, an assignment is a mapping
$f:\{1,2, \ldots, n\} \rightarrow\{1, \ldots, m\}$.

- The load $\ell_{f}(j)$ of machine M_{j} under f is $\sum_{i: f(i)=j} s_{i}$
- Goal is to find f to minimize $\max _{j} \ell_{f}(j)$.

Greedy List Scheduling

List-Scheduling

Let $\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \ldots, \boldsymbol{J}_{n}$ be an ordering of jobs
for $\boldsymbol{i}=1$ to \boldsymbol{n} do
Schedule job $\boldsymbol{J}_{\boldsymbol{i}}$ on the currently least loaded machine
OPT is the optimum load

Lower bounds on OPT:

Greedy List Scheduling

List-Scheduling

Let $\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \ldots, \boldsymbol{J}_{n}$ be an ordering of jobs
for $\boldsymbol{i}=1$ to \boldsymbol{n} do
Schedule job $\boldsymbol{J}_{\boldsymbol{i}}$ on the currently least loaded machine
OPT is the optimum load

Lower bounds on OPT:

- average load: $O P T \geq \sum_{i=1}^{n} s_{i} / m$. Why?
- maximum job size: $O P T \geq \max _{i=1}^{n} s_{i}$. Why?

Analysis of Greedy List Scheduling

Theorem
Let L be makespan of Greedy List Scheduling on a given instance. Then $L \leq 2(\mathbf{1}-\mathbf{1} / \mathbf{m})$ OPT where OPT is the optimum makespan for that instance.

Analysis of Greedy List Scheduling

Theorem

Let L be makespan of Greedy List Scheduling on a given instance. Then $L \leq 2(\mathbf{1}-\mathbf{1} / \mathbf{m})$ OPT where OPT is the optimum makespan for that instance.

- Let $M_{\boldsymbol{h}}$ be the machine which achieves the load L for Greedy List Scheduling.
- Let J_{i} be the job that was last scheduled on M_{h}.
- Why was $\boldsymbol{J}_{\boldsymbol{i}}$ scheduled on $\boldsymbol{M}_{\boldsymbol{h}}$? It means that $\boldsymbol{M}_{\boldsymbol{h}}$ was the least loaded machine when $\boldsymbol{J}_{\boldsymbol{i}}$ was considered. Implies all machines had load at least $L-s_{i}$ at that time.

Analysis continued

Lemma
 $L-s_{i} \leq\left(\sum_{\ell=1}^{i-1} s_{\ell}\right) / m$.

Analysis continued

Lemma

$L-s_{i} \leq\left(\sum_{\ell=1}^{i-1} s_{\ell}\right) / m$.

But then

$$
\begin{aligned}
L & \leq\left(\sum_{\ell=1}^{i-1} s_{\ell}\right) / m+s_{i} \\
& \leq\left(\sum_{\ell=1}^{n} s_{\ell}\right) / m+\left(1-\frac{1}{m}\right) s_{i} \\
& \leq O P T+\left(1-\frac{1}{m}\right) O P T \\
& \leq\left(2-\frac{2}{m}\right) O P T
\end{aligned}
$$

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$
s_{1} \geq s_{2} \geq \cdots \geq s_{n}
$$

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$
s_{1} \geq s_{2} \geq \cdots \geq s_{n}
$$

Does it lead to an improved performance in the worst case? How much?

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$
s_{1} \geq s_{2} \geq \cdots \geq s_{n}
$$

Does it lead to an improved performance in the worst case? How much?

Theorem

Greedy List Scheduling with jobs sorted from largest to smallest gives a 3/2-approximation and this is essentially tight.

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$
s_{1} \geq s_{2} \geq \cdots \geq s_{n}
$$

Does it lead to an improved performance in the worst case? How much?

Theorem

Greedy List Scheduling with jobs sorted from largest to smallest gives a 3/2-approximation and this is essentially tight.

New lower bound: $s_{m}+s_{m+1} \leq O P T$.

Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem
Input: A (un)directed complete graph $G=(V, E)$ with edge costs
$c: E \rightarrow \mathbb{R}_{+}$.
Goal: Find a Hamiltonian Cycle of minimum total edge cost

Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem
Input: A (un)directed complete graph $G=(V, E)$ with edge costs
$c: E \rightarrow \mathbb{R}_{+}$.
Goal: Find a Hamiltonian Cycle of minimum total edge cost
Observation: Inapproximable to any polynomial factor.

Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem
Input: A (un)directed complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{R}_{+}$.
Goal: Find a Hamiltonian Cycle of minimum total edge cost
Observation: Inapproximable to any polynomial factor.
Metric-TSP: $G=(V, E)$ is a complete graph and c defines a metric space. $c(u, v)=c(v, u)$ for all u, v and $c(u, w) \leq c(u, v)+c(v, w)$ for all u, v, w.

Theorem

Metric-TSP is NP-Hard.

Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given $G=(V, E)$ with edges costs c, find a tour of minimum cost that visits all vertices but can visit a vertex more than once - A closed walk.

Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given $G=(V, E)$ with edges costs c, find a tour of minimum cost that visits all vertices but can visit a vertex more than once - A closed walk.

Because, any such tour can be converted in to a simple cycle of smaller cost by adding "short-cuts".

Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given $G=(V, E)$ with edges costs \boldsymbol{c}, find a tour of minimum cost that visits all vertices but can visit a vertex more than once - A closed walk.

Because, any such tour can be converted in to a simple cycle of smaller cost by adding "short-cuts".

Essentially need to find an Eulerian graph.

Christofides Heuristic: $3 / 2$ approximation

Christofides-Heuristic $(G=(V, E), c)$
Compute a minimum spanning tree (MST) \boldsymbol{T} in \boldsymbol{G}

Christofides Heuristic: $3 / 2$ approximation

Christofides-Heuristic ($G=(V, E), c)$
Compute a minimum spanning tree (MST) \boldsymbol{T} in \boldsymbol{G} Let S be vertices of odd degree in \boldsymbol{T} (Note: $|\boldsymbol{S}|$ is even)

Christofides Heuristic: $3 / 2$ approximation

Christofides-Heuristic $(G=(V, E), c)$
Compute a minimum spanning tree (MST) \boldsymbol{T} in \boldsymbol{G} Let \boldsymbol{S} be vertices of odd degree in \boldsymbol{T} (Note: $|\boldsymbol{S}|$ is even) Find a minimum cost matching M on S in G

Christofides Heuristic: $3 / 2$ approximation

Christofides-Heuristic $(G=(V, E), c)$
Compute a minimum spanning tree (MST) \boldsymbol{T} in \boldsymbol{G} Let \boldsymbol{S} be vertices of odd degree in \boldsymbol{T} (Note: $|\boldsymbol{S}|$ is even) Find a minimum cost matching \boldsymbol{M} on \boldsymbol{S} in \boldsymbol{G} Add \boldsymbol{M} to \boldsymbol{T} to obtain Eulerian graph \boldsymbol{H}

Christofides Heuristic: $3 / 2$ approximation

Christofides-Heuristic $(G=(V, E), c)$
Compute a minimum spanning tree (MST) \boldsymbol{T} in \boldsymbol{G} Let S be vertices of odd degree in \boldsymbol{T} (Note: $|\boldsymbol{S}|$ is even) Find a minimum cost matching M on S in G Add \boldsymbol{M} to \boldsymbol{T} to obtain Eulerian graph \boldsymbol{H} An Eulerian tour of \boldsymbol{H} gives a tour of \boldsymbol{G} Obtain Hamiltonian cycle by shortcutting the tour

Christofides Heuristic: $3 / 2$ approximation

Christofides-Heuristic $(G=(V, E), c)$

Compute a minimum spanning tree (MST) \boldsymbol{T} in \boldsymbol{G} Let S be vertices of odd degree in \boldsymbol{T} (Note: $|\boldsymbol{S}|$ is even) Find a minimum cost matching M on S in G Add \boldsymbol{M} to \boldsymbol{T} to obtain Eulerian graph \boldsymbol{H} An Eulerian tour of \boldsymbol{H} gives a tour of \boldsymbol{G} Obtain Hamiltonian cycle by shortcutting the tour

Analysis of Christofides Heuristic

Main lemma:
Lemma
$c(M) \leq O P T / 2$.

Analysis of Christofides Heuristic

Main lemma:
Lemma
$c(M) \leq O P T / 2$.
Assuming lemma:

Theorem

Christofides heuristic returns a tour of cost at most 3OPT /2.
Proof.
$c(H)=c(T)+c(M) \leq O P T+O P T / 2 \leq 3 O P T / 2$. Cost of tour is at most cost of \boldsymbol{H}.

Example - Randomized Approximation Scheme

Consider the LP relaxation for Set Cover. Let x_{i} be the variable in the relaxation for set S_{i}. Suppose x^{*} is an optimum solution to the LP relaxation. Define $\boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{\operatorname { m i n }}\left\{\mathbf{1}, \mathbf{2} \ln \boldsymbol{n} \cdot x_{i}^{*}\right\}$ for each set S_{i}. Pick each set S_{i} independently with probability y_{i}.

- Prove that the expected weight of the sets chosen is at most $2 \ln n \cdot O P T$.

Contd.

Prove that the probability that any fixed element in the universe is not covered by the chosen sets is at most $\mathbf{1} / \boldsymbol{n}^{\mathbf{2}}$.

Contd.

Prove that, with probability at least $\mathbf{1 - 1 / n}$ all the elements of the universe are covered by the chosen sets. Hint: Use union bound.

Contd.

Prove that with probability $\mathbf{1 / 2 - 1 / n}$ the algorithm outputs a set cover for the universe whose weight at most $4 \ln n \cdot O P T$ where OPT is the weight of an optimum Set Cover. Hint: Use Markov's inequality.

