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What we saw so far...

Fast Fourier Transform (FFT).

Dynamic Programming

String algorithms.

Graph algorithms: shortest path, independent set, dominating
set, etc.

Randomozed Algorithms

Quick sort,

High probability analysis: Markov, Chebyshev, and Chernoff
inequalities

Hashing, Fingerprinting
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Part I

FFT
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What is Fast Fourier Transform

Definition
Given a polynomial a = (a0, a1, . . . , an−1) in coefficient
representation the Discrete Fourier Transform (DFT) of a is the
vector a′ = (a′0, a

′
1, . . . , a

′
n−1) where a′j = a(ωj

n) for 0 ≤ j < n.

a′ is a sample representation of polynomial with coefficient
reprentation a at n’th roots of unity.

We have shown that a′ can be computed from a in O(n log n) time.
This divide and conquer algorithm is called the Fast Fourier
Transform (FFT).
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Why FFT? Convolution and Polynomial

Multiplication

Convolution
Convolution of vectors a = (a0, a1, . . . an−1) and
b = (b0, b1, . . . bn−1) is a vector c = (c0, c1, . . . , c2n−2), where

ck =
∑

i ,j : i+j=k

ai · bj

Polynomial Multiplication
If vectors a and b are coefficients of two n − 1 degree polynomials,
(abusing notation) a(x) =

∑n−1
i=0 aix i , b(x) =

∑n−1
i=0 bix i then c

is the coefficient vector of the product polynomial a(x) ∗ b(x).
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Why FFT? Convolution and Polynomial

Multiplication

Convolution
Given vectors a = (a0, a1, . . . an−1) and b = (b0, b1, . . . bn−1)
find its convolution vector c = (c0, c1, . . . , c2n−2).

1 Evaluate polynomials a and b at the 2nth roots of unity, to get
their sample representation a′ and b′.

2 Compute sample representation c ′ = (a′0b
′
0, . . . , a

′
2n−2b

′
2n−2)

of product c = a · b
3 Compute c from c ′ using inverse Fourier transform.

Step 1 takes O(n log n) using two FFTs

Step 2 takes O(n) time

Step 3 takes O(n log n) using one FFT
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Problem

Let ā = a0, a1, . . . , an−1 be a sequence of n numbers representing
value of a function at different points, we would like to “smooth” it
using vector b̄ = (b0, b1, . . . , bk−1) for k ≤ n as follows:
ā′ = a′0, a

′
1, . . . , a

′
n−1 where a′i = aib0 + (ai+1b1 + . . . +

ai+k−1bk−1) + (ai−1b1 + ai−2b2 + . . .+ ai−k+1bk−1). If an index
goes out of bounds we assume that the corresponding value is 0.
Given ā and b̄ describe how ā′ can be computed in O(n2) time.
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Part II

Dynamic Programming
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Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases.
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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:
A recursion that when memoized leads to an efficient algorithm.
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Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY
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Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears exactly once, and there is no “crossing”: if (i , j), ..., (i ′, j ′)
then i < i ′ and j < j ′. One of i or j could be empty, in which case
no comparision.

In the above example, this is
M = {(1, 1), (2, 2), (3, 3), ( , 4), (4, 5)}.
Cost of an alignment: the number of mismatched columns.
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Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Edit Distance
Basic observation

Let A = αx and B = βy
α, β: strings. x and y single characters.
Possible alignments between A and B

α x
β y or

α x
βy or

αx
β y

Observation
Prefixes must have optimal alignment!

EDIST (A,B) = min


EDIST (α, β) + [x 6= y ]

1 + EDIST (α,B)

1 + EDIST (A, β)
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Recursive Algorithm

Assume strings are given as arrays A[1..m] and B[1..n]

EDIST (A[1..i ],B[1..j ])
If (i = 0) return j
If (j = 0) return i
m1 = 1 + EDIST (A[1..(i − 1)],B[1..j ])
m2 = 1 + EDIST (A[1..i ],B[1..(j − 1)]))
If (A[m] = B[n]) then

m3 = EDIST (A[1..(i − 1)],B[1..(j − 1)])
Else

m3 = 1 + EDIST (A[1..(i − 1)],B[1..(j − 1)])
return min(m1,m2,m3)

Call EDIST (A[1..m],B[1..n])
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Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of M[i ][j ] to ∞
return EDIST (A[1..m],B[1..n])

EDIST (A[1..i ],B[1..j ])
If (M[i ][j ] <∞) return M[i ][j ] (* return stored value *)

If (i = 0)
M[i ][j ] = j

ElseIf (j = 0)
M[i ][j ] = i

Else

m1 = 1 + EDIST (A[1..(i − 1)],B[1..j ])
m2 = 1 + EDIST (A[1..i ],B[1..(j − 1)]))
If (A[i ] = B[j ]) m3 = EDIST (A[1..(i − 1)],B[1..(j − 1)])
Else m3 = 1 + EDIST (A[1..(i − 1)],B[1..(j − 1)])
M[i ][j ] = min(m1,m2,m3)

return M[i ][j ]

Ruta (UIUC) CS473 19 Spring 2018 19 / 61



Matrix and DAG of Computation
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Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 0 to m do M[i , 0] = i
for j = 0 to n do M[0, j ] = j

for i = 1 to m do
for j = 1 to n do

M[i ][j ] = min


[xi 6= yj ] + M[i − 1][j − 1],

1 + M[i − 1][j ],
1 + M[i ][j − 1]

Analysis
1 Running time is O(mn).
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Matrix and DAG of Computation
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Figure: Iterative algorithm in previous slide computes values in row
order.
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Problem

Given a graph G = (V ,E) a matching is a set of edges M ⊂ E
such that no two edges in M share an end point. Describe an
efficient algorithm that given a tree T = (V ,E) and non-negative
weights w : E → R+ finds a maximum weight matching in T .
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Dijkstra’s Algorithm

Initialize for each node v, dist(s, v) =∞
Initialize S = ∅, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−S dist(s, u)
S = S ∪ {v}
for each u in Adj(v) \ S do

dist(s, u) = min
(
dist(s, u), dist(s, v) + `(v , u)

)

1 Using Fibonacci heaps. Running time: O(m + n log n).

2 Can compute shortest path tree.
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Single-Source Shortest Paths with Negative Edge

Lengths

Single-Source Shortest
Path Problems
Input: A directed graph
G = (V ,E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

Given nodes s, t find
shortest path from s to t.

Given node s find shortest
path from s to all other
nodes.

s

2 3

4

5

6

7 t

9

15

6

10

-8 20

30

18

11

16

-16

19

6

6

44
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

Dijkstra’s algorithm does not work with negative edges.
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Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G . (Remove nodes
unreachable from s).

d(v , k): shortest walk length from s to v using at most k edges.

Recursion for d(v , k):

d(v , k) = min

{
minu∈V (d(u, k − 1) + `(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.
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A Basic Lemma

Lemma
Assume s can reach all nodes in G = (V ,E). Then,

1 There is a negative length cycle in G iff
d(v , n) < d(v , n − 1) for some node v ∈ V .

2 If there is no negative length cycle in G then
dist(s, v) = d(v , n − 1) for all v ∈ V .
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Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)
If d(v , n) < d(v , n − 1)

Return ‘‘Negative Cycle in G’’

Running time: O(mn) Space: O(n2)
Space can be reduced to O(m + n).
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Bellman-Ford with Space Saving

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ In(v) do
d(v) = min{d(v), d(u) + `(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ In(v) do

if (d(v) > d(u) + `(u, v))
Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d(v)
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Problem

Given a directed graph G = (V ,E) with non-negative edge lengths
` : E → R+, describe an algorithm that finds the shortest cycle in
G that contains a specific node s.
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Problem

Given a directed graph G = (V ,E) with non-negative edge lengths
` : E → R+. Describe an algorithm to find the shortest cycle
containing s with at most k edges.
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Part III

Randomization
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Randomized Algorithms

Input x Output y
Deterministic Algorithm

Input x Output yr
Randomized Algorithm

random bits r
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Types of Randomized Algorithms

Typically one encounters the following types:

1 Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. Analyze expected running time.

2 Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. Analyze the probability of the correct
output (and also the running time).

3 Algorithms whose running time and output may both be random.
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Ping and find.

Consider a deterministic algorithm A that is trying to find an element
in an array X of size n. At every step it is allowed to ask the value of
one cell in the array, and the adversary is allowed after each such
ping, to shuffle elements around in the array in any way it seems fit.
For the best possible deterministic algorithm the number of rounds it
has to play this game till it finds the required element is

(A) O(1)

(B) O(n)

(C) O(n log n)

(D) O(n2)

(E) ∞.
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Ping and find randomized.

Consider an algorithm randFind that is trying to find an element in
an array X of size n. At every step it asks the value of one random
cell in the array, and the adversary is allowed after each such ping, to
shuffle elements around in the array in any way it seems fit. This
algorithm would stop in expectation after

(A) O(1)

(B) O(log n)

(C) O(n)

(D) O(n2)

(E) ∞.

steps.
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Median

Consider the problem of finding an “approximate median” of an
unsorted array A[1..n]: an element of A with rank between n/4 and
3n/4.

Finding an approximate median is not any easier than a proper
median.

n/2 elements of A qualify as approximate medians and hence a
random element is good with probability 1/2!
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Part IV

Basics of Randomization
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Discrete Probability Space

Definition
A discrete probability space is a pair (Ω,Pr) consists of finite set Ω
of elementary events and function p : Ω→ [0, 1] which assigns a
probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

Example

An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T ] = 1/2.
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Events

Definition
Event is a collection of elementary events. The probability of an
event A ⊂ Ω, denoted by Pr[A], is

∑
ω∈A Pr[ω].

Union Bound
For any two events E and F, we have that

Pr
[
E ∪ F

]
≤ Pr

[
E
]

+ Pr
[
F
]

.

Independence
Events A and B are called independent if
Pr[A ∩ B] = Pr[A] Pr[B].
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Random Variables

Definition
Given a probability space (Ω,Pr) a (real-valued) random variable X
over Ω is a function X : Ω→ R.

Definition (Expectation: Average of X as per Pr)

Expectation of X , E[X ], is defined as
∑
ω∈Ω Pr[ω] X (ω).

If S is the set of all values that X takes, then expectation can also
be written as

∑
x∈S x Pr[X = x].

Linearity of Expectation
Given two random variables X1 and X2,

E[X1 + X2] = E[X1] + E[X2].
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Independence of Random Variables

Random variables X and Y are said to be independent if

∀x, y , Pr[X = x ∧ Y = y ] = Pr[X = x] · Pr[Y = y ]

Multiplication

If X and Y are independent then E[XY ] = E[X ] E[Y ].
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Part V

Randomized Quick Sort
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Randomized QuickSort

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.
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Analysis via Recurrence

1 Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

2 Note that Q(A) is a random variable.

3 Let Ai
left and Ai

right be the left and right arrays obtained if:

Let Xi be indicator random variable, which is set to 1 if the
pivot is of rank i in A, else zero.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi ] = Pr[pivot is the element with rank i ] = 1/n.

Ruta (UIUC) CS473 50 Spring 2018 50 / 61



Analysis via Recurrence

1 Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

2 Note that Q(A) is a random variable.

3 Let Ai
left and Ai

right be the left and right arrays obtained if:

Let Xi be indicator random variable, which is set to 1 if the
pivot is of rank i in A, else zero.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi ] = Pr[pivot is the element with rank i ] = 1/n.
Ruta (UIUC) CS473 50 Spring 2018 50 / 61



Independence of Random Variables

Lemma
Random variables Xi is independent of random variables Q(Ai

left) as
well as Q(Ai

right), i.e.

E
[
Xi · Q(Ai

left)
]

= E[Xi ] E
[
Q(Ai

left)
]

E
[
Xi · Q(Ai

right)
]

= E[Xi ] E
[
Q(Ai

right)
]

Proof.
This is because the algorithm, while recursing on Q(Ai

left) and
Q(Ai

right) uses new random coin tosses that are independent of the
coin tosses used to decide the first pivot. Only the latter decides
value of Xi .
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Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)

By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

∑n
i=1 E[Xi ]

(
E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

≤ n +
∑n

i=1
1
n (T (i − 1) + T (n − i)) .
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Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 53 Spring 2018 53 / 61



Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i)) .

Ruta (UIUC) CS473 53 Spring 2018 53 / 61



Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i))

with base case T (1) = 0.

Lemma
T (n) = O(n log n).

Proof.
(Guess and) Verify by induction.
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Part VI

Inequalities
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Markov’s Inequality

Markov’s inequality
Let X be a non-negative random variable over a probability space
(Ω,Pr). For any a > 0,

Pr[X ≥ a] ≤ E[X ]

a

Ruta (UIUC) CS473 56 Spring 2018 56 / 61



Chebyshev’s Inequality

Variance
Variance of X is the measure of how much does it deviate from its
mean value. Formally,
Var(X ) = E

[
(X − E[X ])2

]
= E

[
X 2
]
− E[X ]2

Chebyshev’s Inequality

Given a ≥ 0, Pr[|X − E[X ] | ≥ a] ≤ Var(X )
a2

If X and Y are independent then
Var(X + Y ) = Var(X ) + Var(Y ).
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Chebyshev’s Inequality: Under Mutual

Independence

Let X1, . . . ,Xk be k independent random variables such that, for
each i ∈ [1, k], Xi equals 1 with probability pi , and 0 with

probability (1− pi). Let X =
∑k

i=1 Xi and µ = E[X ] =
∑

i pi .
For any 0 < δ < 1, it holds that:

Var(X ) ≤ µ⇒ Pr[|X − µ| ≥ a] ≤
Var(X )

a2
<
µ

a2

For δ > 0,Pr[X ≥ (1 + δ)µ] ≤ 1
δ2µ

For 0 < δ < 1,Pr[X ≤ (1− δ)µ] ≤ 1
δ2µ
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Chernoff Bound

Let X1, . . . ,Xk be k independent random variables such that, for
each i ∈ [1, k], Xi equals 1 with probability pi , and 0 with

probability (1− pi). Let X =
∑k

i=1 Xi and µ = E[X ] =
∑

i pi .
For any 0 < δ < 1, it holds that:

Pr[X ≥ (1 + δ)µ] ≤ e
−δ2µ

3 and Pr[X ≤ (1− δ)µ] ≤ e
−δ2µ

2

Tighter bound

For any δ > 0, Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
Pr[X ≥ (1− δ)µ] ≤

(
e−δ

(1−δ)(1−δ)

)µ
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Problem: Approximate Median

Suppose you are presented with a very large set S of real numbers,
and you would like to approximate the median of these numbers by
sampling. Let |S| = n. We say x is an ε-approximate median of S if
at least (1/2− ε)n are less than x and at least (1/2− ε)n are
greater than x . Consider an algorithm that samples a number c
times u.a.r. from S , forms set S ′ of sampled numbers, and outputs a
median of S ′. Show that for the algorithm to return ε-approximate
median w.p. at least (1− δ), it suffices to have sample size c that is
an absolute constant, independent of n.
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