
CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

Ruta (UIUC) CS473 1 Spring 2018 1 / 29

CS 473: Algorithms, Spring 2018

Simplex and LP Duality
Lecture 19
March 29, 2018

Some of the slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 2 Spring 2018 2 / 29

Outline

Simplex: Intuition and Implementation Details

Computing starting vertex: equivalent to solving an LP!

Infeasibility, Unboundedness, and Degeneracy.

Duality: Bounding the objective value through weak-duality

Strong Duality, Cone view.

Ruta (UIUC) CS473 3 Spring 2018 3 / 29

Part I

Recall

Ruta (UIUC) CS473 4 Spring 2018 4 / 29

Feasible Region and Convexity

Canonical Form
Given A ∈ Rn×d , b ∈ Rn×1 and c ∈ R1×d , find x ∈ Rd×1

max : c · x
s.t. Ax ≤ b

1 Each linear constraint defines a halfspace, a convex set.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Optimal value attained at a vertex of the polyhedron.

Ruta (UIUC) CS473 5 Spring 2018 5 / 29

Feasible Region and Convexity

Canonical Form
Given A ∈ Rn×d , b ∈ Rn×1 and c ∈ R1×d , find x ∈ Rd×1

max : c · x
s.t. Ax ≤ b

1 Each linear constraint defines a halfspace, a convex set.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Optimal value attained at a vertex of the polyhedron.

Ruta (UIUC) CS473 5 Spring 2018 5 / 29

Ruta (UIUC) CS473 6 Spring 2018 6 / 29

Part II

Simplex

Ruta (UIUC) CS473 7 Spring 2018 7 / 29

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?

Ruta (UIUC) CS473 8 Spring 2018 8 / 29

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?

Ruta (UIUC) CS473 8 Spring 2018 8 / 29

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ and optimal is x∗, then
c · x∗ > c · x̂ .

How does (c · x) change as we move from x̂ to x∗ on the line
joining the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.
(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd , as δ goes from 0 to 1, we move from x̂ to x∗.
c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Ruta (UIUC) CS473 9 Spring 2018 9 / 29

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ and optimal is x∗, then
c · x∗ > c · x̂ .

How does (c · x) change as we move from x̂ to x∗ on the line
joining the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.
(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd , as δ goes from 0 to 1, we move from x̂ to x∗.
c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Ruta (UIUC) CS473 9 Spring 2018 9 / 29

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ and optimal is x∗, then
c · x∗ > c · x̂ .

How does (c · x) change as we move from x̂ to x∗ on the line
joining the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.
(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd , as δ goes from 0 to 1, we move from x̂ to x∗.
c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Ruta (UIUC) CS473 9 Spring 2018 9 / 29

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ and optimal is x∗, then
c · x∗ > c · x̂ .

How does (c · x) change as we move from x̂ to x∗ on the line
joining the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.
(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd , as δ goes from 0 to 1, we move from x̂ to x∗.
c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Ruta (UIUC) CS473 9 Spring 2018 9 / 29

Cone

Definition
Given a set of vectors D = {d1, . . . , dk}, the cone spanned by
them is just their positive linear combinations, i.e.,

cone(D) = {d | d =
k∑

i=1

λidi , where λi ≥ 0, ∀i}

Ruta (UIUC) CS473 10 Spring 2018 10 / 29

Cone at a Vertex

Let z1, . . . , zk be the neighboring vertices of x̂ . And let di = zi − x̂
be the direction from x̂ to zi .

Lemma
Any feasible direction of
movement d from x̂ is in the
cone({d1, . . . , dk}).

Ruta (UIUC) CS473 11 Spring 2018 11 / 29

Improving Direction Implies Improving Neighbor

Lemma
If d ∈ cone({d1, . . . , dk}) and (c · d) > 0, then there exists di
such that (c · di) > 0.

Proof.
To the contrary suppose (c · di) ≤ 0, ∀i ≤ k .
Since d is a positive linear combination of di ’s,

(c · d) = (c ·
∑k

i=1 λidi)

=
∑k

i=1 λi(c · di)
≤ 0 A contradiction!

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.

Ruta (UIUC) CS473 12 Spring 2018 12 / 29

Improving Direction Implies Improving Neighbor

Lemma
If d ∈ cone({d1, . . . , dk}) and (c · d) > 0, then there exists di
such that (c · di) > 0.

Proof.
To the contrary suppose (c · di) ≤ 0, ∀i ≤ k .
Since d is a positive linear combination of di ’s,

(c · d) = (c ·
∑k

i=1 λidi)

=
∑k

i=1 λi(c · di)
≤ 0 A contradiction!

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.

Ruta (UIUC) CS473 12 Spring 2018 12 / 29

Improving Direction Implies Improving Neighbor

Lemma
If d ∈ cone({d1, . . . , dk}) and (c · d) > 0, then there exists di
such that (c · di) > 0.

Proof.
To the contrary suppose (c · di) ≤ 0, ∀i ≤ k .
Since d is a positive linear combination of di ’s,

(c · d) = (c ·
∑k

i=1 λidi)

=
∑k

i=1 λi(c · di)
≤ 0 A contradiction!

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.

Ruta (UIUC) CS473 12 Spring 2018 12 / 29

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-D face. formed by
d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 2-dimension (d = 2)

x2

x1

300

200

Ruta (UIUC) CS473 13 Spring 2018 13 / 29

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-D face. formed by
d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 2-dimension (d = 2)

x2

x1

300

200

Ruta (UIUC) CS473 13 Spring 2018 13 / 29

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-D face. formed by
d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 2-dimension (d = 2)

x2

x1

300

200

Ruta (UIUC) CS473 13 Spring 2018 13 / 29

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-D face. formed by
d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 2-dimension (d = 2)

x2

x1

300

200

Ruta (UIUC) CS473 13 Spring 2018 13 / 29

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-dimensional face.
formed by d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 3-dimension (d = 3)

①

②

③

′

image source: webpage of Prof. Forbes W. Lewis

Ruta (UIUC) CS473 14 Spring 2018 14 / 29

How Many Neighbors a Vertex Has?
Geometry view...

One neighbor per tight hyperplane. Therefore typically d .

Suppose x ′ is a neighbor of
x̂ , then on the edge joining
the two d − 1 constraints are
tight.

These d − 1 are also tight at
both x̂ and x ′.
One more constraints, say i ,
is tight at x̂ . “Relaxing” i at
x̂ leads to x ′.

①

②

③

′

x

④

Ruta (UIUC) CS473 15 Spring 2018 15 / 29

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.

Ruta (UIUC) CS473 16 Spring 2018 16 / 29

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.

Ruta (UIUC) CS473 16 Spring 2018 16 / 29

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.

Ruta (UIUC) CS473 16 Spring 2018 16 / 29

Simplex in Higher Dimensions

Simplex Algorithm
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.

Ruta (UIUC) CS473 17 Spring 2018 17 / 29

Part III

Implementation of the Pivoting Step
(Moving to an improving neighbor)

Ruta (UIUC) CS473 18 Spring 2018 18 / 29

Moving to a Neighbor

Fix a vertex x̂ . Let the d hyperplanes/constraints tight at x̂ be,

d∑
j=1

aijxj = bi , 1 ≤ i ≤ d Equivalently, Âx = b̂

A neighbor vertex x ′ is connected
to x̂ by an edge.

d − 1 hyperplanes tight on this
edge.

To reach x ′, one hyperplane has to
be relaxed, while maintaining other
d − 1 tight.

①

②

③

′

x

④

Ruta (UIUC) CS473 19 Spring 2018 19 / 29

Moving to a Neighbor (Contd.)

−Â
−1

=

...

...
d1 . . . dd
...

...

Lemma
Moving in direction di from x̂ , all except constraint i remain tight.

Proof.
For a small ε > 0, let y = x̂ + ε(di), then

Ây = Â(x̂ + εdi) = Âx̂ + εÂ(−Â
−1

)(.,i)

= b̂ + ε[0, . . . ,−1, . . . , 0]T

Clearly,
∑

j akjyj = bk ,∀k 6= i , and
∑

j aijyj = bi − ε < bi .

Thus, di is the direction on the edge obtained by relaxing hyperplane
i at vertex x̂ .

Ruta (UIUC) CS473 20 Spring 2018 20 / 29

Moving to a Neighbor (Contd.)

−Â
−1

=

...

...
d1 . . . dd
...

...

Lemma
Moving in direction di from x̂ , all except constraint i remain tight.

Proof.
For a small ε > 0, let y = x̂ + ε(di), then

Ây = Â(x̂ + εdi) = Âx̂ + εÂ(−Â
−1

)(.,i)
= b̂ + ε[0, . . . ,−1, . . . , 0]T

Clearly,
∑

j akjyj = bk , ∀k 6= i , and
∑

j aijyj = bi − ε < bi .

Thus, di is the direction on the edge obtained by relaxing hyperplane
i at vertex x̂ .

Ruta (UIUC) CS473 20 Spring 2018 20 / 29

Computing the Neighbor

Move in di direction from x̂ , i.e., x̂ + εdi , and STOP when hit a
new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1
through d will be satisfied. For any k > d , where Ak is k th row of
A,

Ak · (x̂ + εdi) ≤ bk ⇒ (Ak · x̂) + ε(Ak · di) ≤ bk
⇒ ε(Ak · di) ≤ bk − (Ak · x̂)

(If (Ak · di) > 0) ⇒ ε ≤ bk−(Ak ·x̂)
Ak ·di

(positive)

If moving towards hyperplane k
(If (Ak · di) < 0) ⇒ ε ≥ bk−(Ak ·x̂)

Ak ·di
(negative)

If moving away from hyperplane k .
No upper bound, and -ve lower bound!

Ruta (UIUC) CS473 21 Spring 2018 21 / 29

Computing the Neighbor

Move in di direction from x̂ , i.e., x̂ + εdi , and STOP when hit a
new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1
through d will be satisfied. For any k > d , where Ak is k th row of
A,

Ak · (x̂ + εdi) ≤ bk ⇒ (Ak · x̂) + ε(Ak · di) ≤ bk
⇒ ε(Ak · di) ≤ bk − (Ak · x̂)

(If (Ak · di) > 0) ⇒ ε ≤ bk−(Ak ·x̂)
Ak ·di

(positive)

If moving towards hyperplane k
(If (Ak · di) < 0) ⇒ ε ≥ bk−(Ak ·x̂)

Ak ·di
(negative)

If moving away from hyperplane k .
No upper bound, and -ve lower bound!

Ruta (UIUC) CS473 21 Spring 2018 21 / 29

Computing the Neighbor

Move in di direction from x̂ , i.e., x̂ + εdi , and STOP when hit a
new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1
through d will be satisfied. For any k > d , where Ak is k th row of
A,

Ak · (x̂ + εdi) ≤ bk ⇒ (Ak · x̂) + ε(Ak · di) ≤ bk
⇒ ε(Ak · di) ≤ bk − (Ak · x̂)

(If (Ak · di) > 0) ⇒ ε ≤ bk−(Ak ·x̂)
Ak ·di

(positive)

If moving towards hyperplane k

(If (Ak · di) < 0) ⇒ ε ≥ bk−(Ak ·x̂)
Ak ·di

(negative)

If moving away from hyperplane k .
No upper bound, and -ve lower bound!

Ruta (UIUC) CS473 21 Spring 2018 21 / 29

Computing the Neighbor

Move in di direction from x̂ , i.e., x̂ + εdi , and STOP when hit a
new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1
through d will be satisfied. For any k > d , where Ak is k th row of
A,

Ak · (x̂ + εdi) ≤ bk ⇒ (Ak · x̂) + ε(Ak · di) ≤ bk
⇒ ε(Ak · di) ≤ bk − (Ak · x̂)

(If (Ak · di) > 0) ⇒ ε ≤ bk−(Ak ·x̂)
Ak ·di

(positive)

If moving towards hyperplane k
(If (Ak · di) < 0) ⇒ ε ≥ bk−(Ak ·x̂)

Ak ·di
(negative)

If moving away from hyperplane k .
No upper bound, and -ve lower bound!

Ruta (UIUC) CS473 21 Spring 2018 21 / 29

Computing the Neighbor

Algorithm

NextVertex(x̂, di)
Set ε←∞.
For k = d + 1 . . . n
ε′ ← bk−(Ak ·x̂)

Ak ·di

If ε′ > 0 and ε′ < ε then
set ε← ε′

If ε <∞ then return x̂ + εdi .
Else return null.

If (c · di) > 0 then the algorithm returns an improving neighbor.

Ruta (UIUC) CS473 22 Spring 2018 22 / 29

Factory Example

max : x1 + 6x2

s.t. 0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 300
x1 + x2 ≤ 400

x̂ = (0, 0)

Â =

[
−1 0
0 −1

]
−Â

−1
=

[
1 0
0 1

]
= [d1 d2]

Moving in direction d1 gives
(200, 0)

Moving in direction d2 gives
(0, 300).

Ruta (UIUC) CS473 23 Spring 2018 23 / 29

Factory Example

max : x1 + 6x2

s.t. 0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 300
x1 + x2 ≤ 400

x̂ = (0, 0)

Â =

[
−1 0
0 −1

]
−Â

−1
=

[
1 0
0 1

]
= [d1 d2]

Moving in direction d1 gives
(200, 0)

Moving in direction d2 gives
(0, 300).

Ruta (UIUC) CS473 23 Spring 2018 23 / 29

Factory Example

max : x1 + 6x2

s.t. 0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 300
x1 + x2 ≤ 400

x̂ = (0, 0)

Â =

[
−1 0
0 −1

]
−Â

−1
=

[
1 0
0 1

]
= [d1 d2]

Moving in direction d1 gives
(200, 0)

Moving in direction d2 gives
(0, 300).

Ruta (UIUC) CS473 23 Spring 2018 23 / 29

Factory Example

max : x1 + 6x2

s.t. 0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 300
x1 + x2 ≤ 400

x̂ = (0, 0)

Â =

[
−1 0
0 −1

]
−Â

−1
=

[
1 0
0 1

]
= [d1 d2]

Moving in direction d1 gives
(200, 0)

Moving in direction d2 gives
(0, 300).

Ruta (UIUC) CS473 23 Spring 2018 23 / 29

Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient – Exponential number of steps!

Ruta (UIUC) CS473 24 Spring 2018 24 / 29

Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient

1 Choosing which neighbor to move to can significantly affect
running time

2 Very efficient Simplex-based algorithms exist
3 Simplex algorithm takes exponential time in the worst case but

works extremely well in practice with many improvements over
the years

2 Non Simplex based methods like interior point methods work
well for large problems.

Ruta (UIUC) CS473 25 Spring 2018 25 / 29

Issues

1 Starting vertex

2 The linear program could be infeasible: No point satisfy the
constraints.

3 The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.

4 More than d hyperplanes could be tight at a vertex, forming
more than d neighbors.

Ruta (UIUC) CS473 26 Spring 2018 26 / 29

Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial!

x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!

Ruta (UIUC) CS473 27 Spring 2018 27 / 29

Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial! x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!

Ruta (UIUC) CS473 27 Spring 2018 27 / 29

Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial! x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution:

x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!

Ruta (UIUC) CS473 27 Spring 2018 27 / 29

Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial! x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!

Ruta (UIUC) CS473 27 Spring 2018 27 / 29

Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial! x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!

Ruta (UIUC) CS473 27 Spring 2018 27 / 29

Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial! x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!

Ruta (UIUC) CS473 27 Spring 2018 27 / 29

Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then the pivoting
step in the simplex will detect it.

Ruta (UIUC) CS473 28 Spring 2018 28 / 29

Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then the pivoting
step in the simplex will detect it.

Ruta (UIUC) CS473 28 Spring 2018 28 / 29

Degeneracy and Cycling

More than d constraints are tight at vertex x̂ . Say d + 1.

Suppose, we pick first d to form Â such that Âx̂ = b̂, and compute
directions d1, . . . , dd .

Then NextVertex(x̂, di) will encounter (d + 1)th constraint tight at
x̂ and return the same vertex. Hence we are back to x̂ !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bi s.

Ruta (UIUC) CS473 29 Spring 2018 29 / 29

Degeneracy and Cycling

More than d constraints are tight at vertex x̂ . Say d + 1.

Suppose, we pick first d to form Â such that Âx̂ = b̂, and compute
directions d1, . . . , dd .

Then NextVertex(x̂, di) will encounter (d + 1)th constraint tight at
x̂ and return the same vertex. Hence we are back to x̂ !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bi s.

Ruta (UIUC) CS473 29 Spring 2018 29 / 29

Degeneracy and Cycling

More than d constraints are tight at vertex x̂ . Say d + 1.

Suppose, we pick first d to form Â such that Âx̂ = b̂, and compute
directions d1, . . . , dd .

Then NextVertex(x̂, di) will encounter (d + 1)th constraint tight at
x̂ and return the same vertex. Hence we are back to x̂ !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bi s.

Ruta (UIUC) CS473 29 Spring 2018 29 / 29

Degeneracy and Cycling

More than d constraints are tight at vertex x̂ . Say d + 1.

Suppose, we pick first d to form Â such that Âx̂ = b̂, and compute
directions d1, . . . , dd .

Then NextVertex(x̂, di) will encounter (d + 1)th constraint tight at
x̂ and return the same vertex. Hence we are back to x̂ !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bi s.

Ruta (UIUC) CS473 29 Spring 2018 29 / 29

	Recall
	Simplex
	Implementation of the Pivoting Step (Moving to an improving neighbor)

