CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2018

CS 473: Algorithms, Spring 2018

Simplex and LP Duality

Lecture 19 March 29, 2018

Some of the slides are courtesy Prof. Chekuri

Outline

Simplex: Intuition and Implementation Details

• Computing starting vertex: equivalent to solving an LP!

Infeasibility, Unboundedness, and Degeneracy.

Duality: Bounding the objective value through weak-duality

Strong Duality, Cone view.

Part I

Recall

Feasible Region and Convexity

Canonical Form

Given $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^{n \times 1}$ and $c \in \mathbb{R}^{1 \times d}$, find $x \in \mathbb{R}^{d \times 1}$

 $\begin{array}{ll} \max: \ c \cdot x \\ s.t. \quad Ax \leq b \end{array}$

Feasible Region and Convexity

Canonical Form

Given $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^{n \times 1}$ and $c \in \mathbb{R}^{1 \times d}$, find $x \in \mathbb{R}^{d \times 1}$

 $\begin{array}{ll} \max: \ c \cdot x \\ s.t. \quad Ax \leq b \end{array}$

- **1** Each linear constraint defines a **halfspace**, a convex set.
- Feasible region, which is an intersection of halfspaces, is a convex polyhedron.
- Optimal value attained at a vertex of the polyhedron.

Part II

Simplex

Moves from a vertex to its neighboring vertex

Moves from a vertex to its neighboring vertex

Questions

- Which neighbor to move to?
- When to stop?
- How much time does it take?

Observations For Simplex

Suppose we are at a non-optimal vertex \hat{x} and optimal is x^* , then $c \cdot x^* > c \cdot \hat{x}$.

Observations For Simplex

Suppose we are at a non-optimal vertex \hat{x} and optimal is x^* , then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

Observations For Simplex

Suppose we are at a non-optimal vertex \hat{x} and optimal is x^* , then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

Strictly increases!

Suppose we are at a non-optimal vertex \hat{x} and optimal is x^* , then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

Strictly increases!

- $d = x^* \hat{x}$ is the direction from \hat{x} to x^* .
- $(c \cdot d) = (c \cdot x^*) (c \cdot \hat{x}) > 0.$

• In $x = \hat{x} + \delta d$, as δ goes from **0** to **1**, we move from \hat{x} to x^* .

- $c \cdot x = c \cdot \hat{x} + \delta(c \cdot d)$. Strictly increasing with δ !
- Due to convexity, all of these are feasible points.

Cone

Definition

Given a set of vectors $D = \{d_1, \ldots, d_k\}$, the cone spanned by them is just their positive linear combinations, i.e.,

$$cone(D) = \{d \mid d = \sum_{i=1}^{k} \lambda_i d_i, \text{ where } \lambda_i \geq 0, \forall i\}$$

Cone at a Vertex

Let z_1, \ldots, z_k be the neighboring vertices of \hat{x} . And let $d_i = z_i - \hat{x}$ be the direction from \hat{x} to z_i .

Improving Direction Implies Improving Neighbor

Lemma

If $d \in cone(\{d_1, \ldots, d_k\})$ and $(c \cdot d) > 0$, then there exists d_i such that $(c \cdot d_i) > 0$.

Improving Direction Implies Improving Neighbor

Lemma

If $d \in cone(\{d_1, \ldots, d_k\})$ and $(c \cdot d) > 0$, then there exists d_i such that $(c \cdot d_i) > 0$.

Proof.

To the contrary suppose $(c \cdot d_i) \leq 0$, $\forall i \leq k$. Since *d* is a positive linear combination of d_i 's,

Improving Direction Implies Improving Neighbor

Lemma

If $d \in cone(\{d_1, \ldots, d_k\})$ and $(c \cdot d) > 0$, then there exists d_i such that $(c \cdot d_i) > 0$.

Proof.

To the contrary suppose $(c \cdot d_i) \leq 0$, $\forall i \leq k$. Since *d* is a positive linear combination of d_i 's,

Theorem

If vertex $\hat{\mathbf{x}}$ is not optimal then it has a neighbor where cost improves.

Ruta (UIUC)

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Geometry of faces

 r linearly independent hyperplanes forms (d - r) dimensional face.

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Geometry of faces

- r linearly independent hyperplanes forms (d - r) dimensional face.
- Vertex: 0-D face. formed by *d* L.I. hyperplanes.

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Geometry of faces

- r linearly independent hyperplanes forms (d - r) dimensional face.
- Vertex: 0-D face. formed by d L.I. hyperplanes.
- Edge: 1-D face. formed by (d - 1) L.I. hyperlanes.

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the In 2-dimension (d = 2) constraints are: $Ax \leq b$

Geometry of faces

- r linearly independent hyperplanes forms (d - r) dimensional face.
- Vertex: 0-D face. formed by d L.I. hyperplanes.
- Edge: 1-D face. formed by (d - 1) L.I. hyperlanes.

$$A \in \mathbb{R}^{n \times d}$$
 $(n > d)$, $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Geometry of faces

- r linearly independent hyperplanes forms (d - r) dimensional face.
- Vertex: **0**-dimensional face. formed by *d* L.I. hyperplanes.
- Edge: 1-D face. formed by (d - 1) L.I. hyperlanes.

In 3-dimension (d = 3)

image source: webpage of Prof. Forbes W. Lewis

One neighbor per tight hyperplane. Therefore typically *d*.

- Suppose x' is a neighbor of *x̂*, then on the edge joining the two d - 1 constraints are tight.
- These d 1 are also tight at both x̂ and x'.
- One more constraints, say *i*, is tight at *x̂*. "Relaxing" *i* at *x̂* leads to *x'*.

Moves from a vertex to its neighboring vertex

Questions + Answers

• Which neighbor to move to? One where objective value increases.

Moves from a vertex to its neighboring vertex

Questions + Answers

- Which neighbor to move to? One where objective value increases.
- When to stop? When no neighbor with better objective value.

Moves from a vertex to its neighboring vertex

Questions + Answers

- Which neighbor to move to? One where objective value increases.
- When to stop? When no neighbor with better objective value.
- How much time does it take? At most *d* neighbors to consider in each step.

Simplex in Higher Dimensions

Simplex Algorithm

- Start at a vertex of the polytope.
- Compare value of objective function at each of the d "neighbors".
- Move to neighbor that improves objective function, and repeat step 2.
- If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a local optimum is also a global optimum — convexity of polyhedra.

Part III

Implementation of the Pivoting Step (Moving to an improving neighbor)

Moving to a Neighbor

Fix a vertex \hat{x} . Let the *d* hyperplanes/constraints tight at \hat{x} be,

 $\sum_{j=1}^{d} a_{ij} x_j = b_i, \ 1 \leq i \leq d$ Equivalently, $\hat{A} x = \hat{b}$

A neighbor vertex x' is connected to \hat{x} by an edge.

d-1 hyperplanes tight on this edge.

To reach x', one hyperplane has to be relaxed, while maintaining other d-1 tight.

Moving to a Neighbor (Contd.)

$$-\hat{A}^{-1} = \begin{bmatrix} \vdots & \vdots \\ d_1 & \dots & d_d \\ \vdots & \vdots \end{bmatrix}$$

Lemma

Moving in direction d_i from \hat{x} , all except constraint i remain tight.

Proof.

For a small $\epsilon > 0$, let $y = \hat{x} + \epsilon(d_i)$, then

$$\hat{A}y = \hat{A}(\hat{x} + \epsilon d_i) = \hat{A}\hat{x} + \epsilon \hat{A}(-\hat{A}^{-1})_{(.,i)}$$

Moving to a Neighbor (Contd.)

$$-\hat{A}^{-1} = \begin{bmatrix} \vdots & \vdots \\ d_1 & \dots & d_d \\ \vdots & \vdots \end{bmatrix}$$

Lemma

Moving in direction d_i from \hat{x} , all except constraint i remain tight.

Proof.

For a small $\epsilon > 0$, let $y = \hat{x} + \epsilon(d_i)$, then

$$\hat{A}y = \hat{A}(\hat{x} + \epsilon d_i) = \hat{A}\hat{x} + \epsilon \hat{A}(-\hat{A}^{-1})_{(.,i)}$$
$$= \hat{b} + \epsilon[0, \dots, -1, \dots, 0]^T$$

Clearly, $\sum_{j} a_{kj} y_j = b_k$, $\forall k \neq i$, and $\sum_{j} a_{ij} y_j = b_i - \epsilon < b_i$.

Computing the Neighbor

Move in d_i direction from \hat{x} , i.e., $\hat{x} + \epsilon d_i$, and STOP when hit a new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through d will be satisfied. For any k > d, where A_k is k^{th} row of A,

Computing the Neighbor

Move in d_i direction from \hat{x} , i.e., $\hat{x} + \epsilon d_i$, and STOP when hit a new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through d will be satisfied. For any k > d, where A_k is k^{th} row of A,

$$\begin{array}{ll} \mathsf{A}_k \cdot (\hat{x} + \epsilon d_i) \leq b_k & \Rightarrow & (\mathsf{A}_k \cdot \hat{x}) + \epsilon(\mathsf{A}_k \cdot d_i) \leq b_k \\ & \Rightarrow & \epsilon(\mathsf{A}_k \cdot d_i) \leq b_k - (\mathsf{A}_k \cdot \hat{x}) \\ (\text{If } (\mathsf{A}_k \cdot d_i) > \mathbf{0}) & \Rightarrow & \epsilon \leq \frac{b_k - (\mathsf{A}_k \cdot \hat{x})}{\mathsf{A}_k \cdot d_i} \end{array}$$

Computing the Neighbor

Move in d_i direction from \hat{x} , i.e., $\hat{x} + \epsilon d_i$, and STOP when hit a new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through d will be satisfied. For any k > d, where A_k is k^{th} row of A,

$$\begin{array}{ll} A_k \cdot (\hat{x} + \epsilon d_i) \leq b_k & \Rightarrow & (A_k \cdot \hat{x}) + \epsilon (A_k \cdot d_i) \leq b_k \\ & \Rightarrow & \epsilon (A_k \cdot d_i) \leq b_k - (A_k \cdot \hat{x}) \\ (\text{If } (A_k \cdot d_i) > 0) & \Rightarrow & \epsilon \leq \frac{b_k - (A_k \cdot \hat{x})}{A_k \cdot d_i} \quad (\text{positive}) \\ \text{f moving towards hyperplane } k \end{array}$$

Computing the Neighbor

Move in d_i direction from \hat{x} , i.e., $\hat{x} + \epsilon d_i$, and STOP when hit a new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through d will be satisfied. For any k > d, where A_k is k^{th} row of A,

$$\begin{array}{ll} A_k \cdot (\hat{x} + \epsilon d_i) \leq b_k & \Rightarrow & (A_k \cdot \hat{x}) + \epsilon (A_k \cdot d_i) \leq b_k \\ & \Rightarrow & \epsilon (A_k \cdot d_i) \leq b_k - (A_k \cdot \hat{x}) \\ (\text{If } (A_k \cdot d_i) > 0) & \Rightarrow & \epsilon \leq \frac{b_k - (A_k \cdot \hat{x})}{A_k \cdot d_i} \quad (\text{positive}) \\ \text{If moving towards hyperplane } k \\ (\text{If } (A_k \cdot d_i) < 0) & \Rightarrow & \epsilon \geq \frac{b_k - (A_k \cdot \hat{x})}{A_k \cdot d_i} \quad (\text{negative}) \\ \text{If moving away from hyperplane } k. \\ \text{No upper bound, and -ve lower bound!} \end{array}$$

Computing the Neighbor

Algorithm

NextVertex (\hat{x}, d_i) Set $\epsilon \leftarrow \infty$. For $k = d + 1 \dots n$ $\epsilon' \leftarrow \frac{b_k - (A_k \cdot \hat{x})}{A_k \cdot d_i}$ If $\epsilon' > 0$ and $\epsilon' < \epsilon$ then set $\epsilon \leftarrow \epsilon'$ If $\epsilon < \infty$ then return $\hat{x} + \epsilon d_i$. Else return *null*.

If $(c \cdot d_i) > 0$ then the algorithm returns an *improving* neighbor.

$$\hat{x} = (0,0)$$

 $\begin{array}{rl} \max: & x_1 + 6x_2 \\ s.t. & 0 \le x_1 \le 200 \\ & 0 \le x_2 \le 300 \\ & x_1 + x_2 \le 400 \end{array}$

Ruta (UIUC)

CS473

Ruta (UIUC)

23

 $\begin{array}{rl} \max: & x_1 + 6x_2 \\ s.t. & 0 \le x_1 \le 200 \\ & 0 \le x_2 \le 300 \\ & x_1 + x_2 \le 400 \end{array}$

$$\hat{x} = (0,0)$$
$$\hat{A} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$-\hat{A}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [d_1 \ d_2]$$

Moving in direction d_1 gives (200, 0)

 $\begin{array}{rl} \max: & x_1 + 6x_2 \\ s.t. & 0 \le x_1 \le 200 \\ & 0 \le x_2 \le 300 \\ & x_1 + x_2 \le 400 \end{array}$

$$\hat{x} = (0,0)$$

 $\hat{A} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
 $-\hat{A}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [d_1 \ d_2]$

Moving in direction d_1 gives (200, 0)

Moving in direction d_2 gives (0, 300).

Solving Linear Programming in Practice

Naïve implementation of Simplex algorithm can be very inefficient – Exponential number of steps!

Solving Linear Programming in Practice

- Naïve implementation of Simplex algorithm can be very inefficient
 - Choosing which neighbor to move to can significantly affect running time
 - Very efficient Simplex-based algorithms exist
 - Simplex algorithm takes exponential time in the worst case but works extremely well in practice with many improvements over the years
- Non Simplex based methods like interior point methods work well for large problems.

Starting vertex

- The linear program could be infeasible: No point satisfy the constraints.
- The linear program could be unbounded: Polygon unbounded in the direction of the objective function.
- More than *d* hyperplanes could be tight at a vertex, forming more than *d* neighbors.

Find an x such that $Ax \leq b$. If $b \geq 0$ then trivial!

Find an x such that $Ax \leq b$. If $b \geq 0$ then trivial! x = 0. Otherwise.

Find an x such that $Ax \leq b$. If $b \geq 0$ then trivial! x = 0. Otherwise.

$$\begin{array}{ll} \min: s\\ s.t. & \sum_{j} a_{ij} x_j - s \leq b_i, \ \forall i\\ & s \geq 0 \end{array}$$

Trivial feasible solution:

Find an x such that $Ax \leq b$. If $b \geq 0$ then trivial! x = 0. Otherwise.

$$\begin{array}{ll} \min: s\\ s.t. & \sum_{j} a_{ij} x_j - s \leq b_i, \ \forall i\\ & s \geq 0 \end{array}$$

Trivial feasible solution: x = 0, $s = |\min_i b_i|$.

Find an x such that $Ax \leq b$. If $b \geq 0$ then trivial! x = 0. Otherwise.

$$\begin{array}{ll} \min: s\\ s.t. & \sum_{j} a_{ij} x_{j} - s \leq b_{i}, \quad \forall i\\ s \geq 0 \end{array}$$

Trivial feasible solution: x = 0, $s = |\min_i b_i|$.

If $Ax \leq b$ feasible then optimal value of the above LP is s = 0.

Find an x such that $Ax \leq b$. If $b \geq 0$ then trivial! x = 0. Otherwise.

$$\begin{array}{ll} \min: \ s\\ s.t. & \sum_{j} a_{ij} x_{j} - s \leq b_{i}, \ \forall i\\ & s \geq 0 \end{array}$$

Trivial feasible solution: x = 0, $s = |\min_i b_i|$.

If $Ax \leq b$ feasible then optimal value of the above LP is s = 0. Checks Feasibility!

Unboundedness: Example

Unboundedness depends on both constraints and the objective function.

Unboundedness: Example

Unboundedness depends on both constraints and the objective function.

If unbounded in the direction of objective function, then the pivoting step in the simplex will detect it.

More than *d* constraints are tight at vertex \hat{x} . Say d + 1.

Suppose, we pick first d to form \hat{A} such that $\hat{A}\hat{x} = \hat{b}$, and compute directions d_1, \ldots, d_d .

More than *d* constraints are tight at vertex \hat{x} . Say d + 1.

Suppose, we pick first d to form \hat{A} such that $\hat{A}\hat{x} = \hat{b}$, and compute directions d_1, \ldots, d_d .

Then NextVertex (\hat{x}, d_i) will encounter $(d + 1)^{th}$ constraint tight at \hat{x} and return the same vertex. Hence we are back to \hat{x} !

More than *d* constraints are tight at vertex \hat{x} . Say d + 1.

Suppose, we pick first d to form \hat{A} such that $\hat{A}\hat{x} = \hat{b}$, and compute directions d_1, \ldots, d_d .

Then NextVertex (\hat{x}, d_i) will encounter $(d + 1)^{th}$ constraint tight at \hat{x} and return the same vertex. Hence we are back to \hat{x} !

Same phenomenon will repeat!

More than *d* constraints are tight at vertex \hat{x} . Say d + 1.

Suppose, we pick first d to form \hat{A} such that $\hat{A}\hat{x} = \hat{b}$, and compute directions d_1, \ldots, d_d .

Then NextVertex (\hat{x}, d_i) will encounter $(d + 1)^{th}$ constraint tight at \hat{x} and return the same vertex. Hence we are back to \hat{x} !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to b_i s.