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Outline

Simplex: Intuition and Implementation Details

Computing starting vertex: equivalent to solving an LP!

Infeasibility, Unboundedness, and Degeneracy.

Duality: Bounding the objective value through weak-duality

Strong Duality, Cone view.
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Part I

Recall
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Feasible Region and Convexity

Canonical Form
Given A ∈ Rn×d , b ∈ Rn×1 and c ∈ R1×d , find x ∈ Rd×1

max : c · x
s.t. Ax ≤ b

1 Each linear constraint defines a halfspace, a convex set.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Optimal value attained at a vertex of the polyhedron.
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Part II

Simplex
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?
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Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ and optimal is x∗, then
c · x∗ > c · x̂ .

How does (c · x) change as we move from x̂ to x∗ on the line
joining the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.
(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd , as δ goes from 0 to 1, we move from x̂ to x∗.
c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.
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Cone

Definition
Given a set of vectors D = {d1, . . . , dk}, the cone spanned by
them is just their positive linear combinations, i.e.,

cone(D) = {d | d =
k∑

i=1

λidi , where λi ≥ 0, ∀i}
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Cone at a Vertex

Let z1, . . . , zk be the neighboring vertices of x̂ . And let di = zi − x̂
be the direction from x̂ to zi .

Lemma
Any feasible direction of
movement d from x̂ is in the
cone({d1, . . . , dk}).
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Improving Direction Implies Improving Neighbor

Lemma
If d ∈ cone({d1, . . . , dk}) and (c · d) > 0, then there exists di
such that (c · di) > 0.

Proof.
To the contrary suppose (c · di) ≤ 0, ∀i ≤ k .
Since d is a positive linear combination of di ’s,

(c · d) = (c ·
∑k

i=1 λidi)

=
∑k

i=1 λi(c · di)
≤ 0 A contradiction!

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.
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How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-D face. formed by
d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 2-dimension (d = 2)

x2

x1

300

200
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How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Geometry of faces
r linearly independent
hyperplanes forms (d − r)
dimensional face.

Vertex: 0-dimensional face.
formed by d L.I. hyperplanes.

Edge: 1-D face. formed by
(d − 1) L.I. hyperlanes.

In 3-dimension (d = 3)

①

②

③

′

image source: webpage of Prof. Forbes W. Lewis
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How Many Neighbors a Vertex Has?
Geometry view...

One neighbor per tight hyperplane. Therefore typically d .

Suppose x ′ is a neighbor of
x̂ , then on the edge joining
the two d − 1 constraints are
tight.

These d − 1 are also tight at
both x̂ and x ′.
One more constraints, say i ,
is tight at x̂ . “Relaxing” i at
x̂ leads to x ′.

①

②

③

′

x

④
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.
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Simplex in Higher Dimensions

Simplex Algorithm
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.
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Part III

Implementation of the Pivoting Step
(Moving to an improving neighbor)
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Moving to a Neighbor

Fix a vertex x̂ . Let the d hyperplanes/constraints tight at x̂ be,

d∑
j=1

aijxj = bi , 1 ≤ i ≤ d Equivalently, Âx = b̂

A neighbor vertex x ′ is connected
to x̂ by an edge.

d − 1 hyperplanes tight on this
edge.

To reach x ′, one hyperplane has to
be relaxed, while maintaining other
d − 1 tight.

①

②

③

′

x

④
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Moving to a Neighbor (Contd.)

−Â
−1

=


...

...
d1 . . . dd
...

...


Lemma
Moving in direction di from x̂ , all except constraint i remain tight.

Proof.
For a small ε > 0, let y = x̂ + ε(di), then

Ây = Â(x̂ + εdi) = Âx̂ + εÂ(−Â
−1

)(.,i)

= b̂ + ε[0, . . . ,−1, . . . , 0]T

Clearly,
∑

j akjyj = bk ,∀k 6= i , and
∑

j aijyj = bi − ε < bi .

Thus, di is the direction on the edge obtained by relaxing hyperplane
i at vertex x̂ .
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−Â
−1

=


...

...
d1 . . . dd
...

...


Lemma
Moving in direction di from x̂ , all except constraint i remain tight.

Proof.
For a small ε > 0, let y = x̂ + ε(di), then
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Computing the Neighbor

Move in di direction from x̂ , i.e., x̂ + εdi , and STOP when hit a
new hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1
through d will be satisfied. For any k > d , where Ak is k th row of
A,

Ak · (x̂ + εdi) ≤ bk ⇒ (Ak · x̂) + ε(Ak · di) ≤ bk
⇒ ε(Ak · di) ≤ bk − (Ak · x̂)

(If (Ak · di) > 0) ⇒ ε ≤ bk−(Ak ·x̂ )
Ak ·di

(positive)

If moving towards hyperplane k
(If (Ak · di) < 0) ⇒ ε ≥ bk−(Ak ·x̂ )

Ak ·di
(negative)

If moving away from hyperplane k .
No upper bound, and -ve lower bound!
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Computing the Neighbor

Algorithm

NextVertex(x̂, di )
Set ε←∞.
For k = d + 1 . . . n
ε′ ← bk−(Ak ·x̂ )

Ak ·di

If ε′ > 0 and ε′ < ε then
set ε← ε′

If ε <∞ then return x̂ + εdi .
Else return null.

If (c · di) > 0 then the algorithm returns an improving neighbor.
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Factory Example

max : x1 + 6x2

s.t. 0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 300
x1 + x2 ≤ 400

x̂ = (0, 0)

Â =

[
−1 0
0 −1

]
−Â

−1
=

[
1 0
0 1

]
= [d1 d2]

Moving in direction d1 gives
(200, 0)

Moving in direction d2 gives
(0, 300).
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Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient – Exponential number of steps!
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Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient

1 Choosing which neighbor to move to can significantly affect
running time

2 Very efficient Simplex-based algorithms exist
3 Simplex algorithm takes exponential time in the worst case but

works extremely well in practice with many improvements over
the years

2 Non Simplex based methods like interior point methods work
well for large problems.
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Issues

1 Starting vertex

2 The linear program could be infeasible: No point satisfy the
constraints.

3 The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.

4 More than d hyperplanes could be tight at a vertex, forming
more than d neighbors.
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Computing the Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial!

x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi , ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi |.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.

Checks Feasibility!
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Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then the pivoting
step in the simplex will detect it.
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Degeneracy and Cycling

More than d constraints are tight at vertex x̂ . Say d + 1.

Suppose, we pick first d to form Â such that Âx̂ = b̂, and compute
directions d1, . . . , dd .

Then NextVertex(x̂, di ) will encounter (d + 1)th constraint tight at
x̂ and return the same vertex. Hence we are back to x̂ !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bi s.
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directions d1, . . . , dd .

Then NextVertex(x̂, di ) will encounter (d + 1)th constraint tight at
x̂ and return the same vertex. Hence we are back to x̂ !

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bi s.

Ruta (UIUC) CS473 29 Spring 2018 29 / 29


	Recall
	Simplex
	Implementation of the Pivoting Step (Moving to an improving neighbor)

