CS 473: Algorithms, Spring 2018 HW 11 (due Wednesday, May $2^{\text {nd }}$ at 8pm)

This homework contains three problems. Read the instructions for submitting homework on the course webpage.

Collaboration Policy: For this home work, each student can work in a group with up to three members. Only one solution for each group needs to be submitted. Follow the submission instructions carefully.

For problems that ask for approximation algorithm, a full credit solution requires the following components:

- An algorithm that runs in polynomial time and retuns a valid solution (although sub-optimal).
- Proof of correctness and running time of the algorithm.
- Proof of approximation factor of the algorithm. This typically involve lower bounding OPT, and then obtaining an upper bound on the value of the solution returned by your algorithm as a function of lower bounds of OPT.

1. Provide a $1 / 2$-factor, polynomial time, approximation algorithm for the Acyclic Subgraph problem:

Input. An directed graph $G=(V, E)$.
Output. A maximum-cardinality set of edges $E^{\prime} \subseteq E$ such that $G\left[E^{\prime}\right]$ is acyclic.
Hint. Arbitrarily number the vertices from 1 to n. Let E_{+}be the edges going in an increasing direction, and E_{-}be those in a decreasing direction. Pick the biggest of E_{+}and E_{-}.
2. Recall as discussed in class, that one possible 2-approximation for the Vertex Cover problem involves solving the LP relaxation of the standard integer linear program, and rounding up to 1 every coordinate where the optimal value was at least $1 / 2$. This question asks you to extend this technique to the Set Cover problem:

Input. A ground set $U=\{1,2, \ldots, m\}$, and a collection of n subsets $S_{1}, \ldots, S_{n} \subseteq U$.
Output. The minimum collection of these subsets which "covers" U, namely, a minimumcardinality set $I \subseteq\{1, \ldots, n\}$ such that $\bigcup_{i \in I} S_{i}=U$.
(a) Get a factor k, polynomial time, approximation algorithm for Set Cover, where k is the largest size of a subset, i.e., $k=\max _{i}\left|S_{i}\right|$.
(b) Extend the Vertex Cover LP-rounding technique to get a factor f, polynomial time, approximation algorithm for Set Cover, where f is the maximum number of times some element appears in the subsets. (If $f_{i}:=\left|\left\{j: S_{j} \ni i\right\}\right|$, then $f=\max _{i} f_{i}$.)
3. In the Max-SAT problem we are given a SAT formula φ and the goal is to find an assignment that satisfies the maximum number of clauses. Consider an oblivious randomized algorithm that sets each variable independently to TRUE with probability exactly $1 / 2$.
(a) Suppose the formula is a k-SAT formula where each clause has exactly k distinct literals. What is the expected number of clauses satisfied by a random assignment? Interestingly for 3-SAT, unless $P=N P$ the ratio provided by this simple algorithm cannot be improved!
(b) Prove that for a general SAT formula, the expected number of clauses that are satisfied is at least $m / 2$ where m is the number of clauses.

The remaining problems are for self study. Do NOT submit for grading.

- See Jeff's homework 11 from Spring 2016. https://courses.engr.illinois.edu/cs473/ sp2016/hw/hw11.pdf

