CS 473: Algorithms, Spring 2018
HW 7 (due Wednesday, March 28th at 8pm)

This homework contains three problems. Read the instructions for submitting homework
on the course webpage.

Collaboration Policy: For this home work, each student can work in a group with up to three
members. Only one solution for each group needs to be submitted. Follow the submission instruc-
tions carefully.

For problems that use maximum flows as a black box, a full-credit solution requires the following.

e A complete description of the relevant flow network, specifying the set of vertices, the set of
edges (being careful about direction), the source and target vertices s and ¢, and the capacity
of every edge. (If the flow network is part of the original input, just say that.)

e A description of the algorithm to construct this flow network from the stated input. This
could be as simple as “We can construct the flow network in O(n?) time by brute force.”

e A description of the algorithm to extract the answer to the stated problem from the maximum
flow. This could be as simple as “Return TRUE if the maximum flow value is at least 42 and
False otherwise.”

e A proof that your reduction is correct. This proof will almost always have two components.
For example, if your algorithm returns a boolean, you should prove that its TRUE answers
are correct and that its FALSE answers are correct. If your algorithm returns a number, you
should prove that number is neither too large nor too small.

e The running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in your flow network.

e You may assume that maximum flows can be computed in O(V E) time. Do not regurgitate
the maximum flow algorithm itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-
disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard graph
problems (for example: reachability, minimum spanning tree, shortest paths) have similar require-
ments.




0. Not to submit: Please do Problems 1 and 2 from https://courses.engr.illinois.edu/
cs473/sp2017/homework/hw6 . pdf}, and Problem 1 from https://courses.engr.illinois.
edu/CS473/fa2016/Homework/hw6 . pdf.

1. Consider a directed network G = (V, E) with capacity c(e) on edge e € E, and a feasible s-t
flow f: B — RT.

We say that flow f is acyclic if the subgraph of directed edges with positive flow contains no
directed cycles. Show that given any feasible flow f in G, there is an a feasible acyclic flow
of the same value (This implies that some maximum flow is acyclic).

2. Let G = (V, E) a directed unit-capacity graph, i.e., ¢(e) = 1 for each e € E.

e Given an integer k > 0, show that G has k edge disjoint paths from s to ¢ if and only
if there is an s-t flow of value k in G. (This shows that the maximum number of edge
disjoint paths from s to ¢ is exactly the value of the maximum s-t flow.)

[Hint: Use Q1, and the fact any flow can be converted to an acyclic integer flow.]

e Describe an algorithm to find maximum number of vertex-disjoint paths from s to ¢
[Hint: reduce the problem to finding edge-disjoint paths].
No proof of correctness necessary but we recommend a brief justifaction. And make sure
you have a clear and understandable algorithm.

3. Let G = (V,E) be a flow network with integer edge capacities. We have seen algorithms
that compute a minimum s-¢ cut. For both problems below assume that you only have black
box access to an algorithm that given G and nodes s,t outputs a maximum (acyclic) flow
f:E — R" from s to t.

e Given G and s,t and an integer k describe an algorithm that checks whether G has a
minimum cut with at most k£ edges.

e Not to submit: Given G and s,t describe an algorithm that decides whether G has at
least two distinct minimum s-t cuts. Alternatively, does G has a unique minimum s-t
cut?

No proof of correctness necessary but we recommend a brief justifaction. And make sure you
have a clear and understandable algorithm.


https://courses.engr.illinois.edu/cs473/sp2017/homework/hw6.pdf
https://courses.engr.illinois.edu/cs473/sp2017/homework/hw6.pdf
https://courses.engr.illinois.edu/CS473/fa2016/Homework/hw6.pdf
https://courses.engr.illinois.edu/CS473/fa2016/Homework/hw6.pdf

The remaining problems are for self study. Do NOT submit for grading.

e Klenberg-Tardos Chapter 7 is an excellent source on network flow and has many nice problems
starting with basic ones to advanced ones. There are several nice problems on reductions to
network flow.

e Problem 7.11 in KT asks you an interesting question on whether the simple greedy algorithm
that does not use the residual graph can achieve a decent approximation. It cannot but
figuring out the counter example is quite useful.

e Problem 7.14, the “evacuation” problem.

e Suppose G is bipartite regular graph. That is, all vertices have the same degree r. Prove that
G has a perfect matching. Prove that this is not necessarily true in a non-bipartite graph.



