CS 473: Algorithms, Spring 2018
HW 8 (due Wednesday, April 4th at 8pm)

This homework contains three problems. Read the instructions for submitting homework
on the course webpage.

Collaboration Policy: For this home work, each student can work in a group with up to three
members. Only one solution for each group needs to be submitted. Follow the submission instruc-
tions carefully.

For problems that use maximum flows as a black box, a full-credit solution requires the following.

e A complete description of the relevant flow network, specifying the set of vertices, the set of
edges (being careful about direction), the source and target vertices s and ¢, and the capacity
of every edge. (If the flow network is part of the original input, just say that.)

e A description of the algorithm to construct this flow network from the stated input. This
could be as simple as “We can construct the flow network in O(n?) time by brute force.”

e A description of the algorithm to extract the answer to the stated problem from the maximum
flow. This could be as simple as “Return TRUE if the maximum flow value is at least 42 and
False otherwise.”

e A proof that your reduction is correct. This proof will almost always have two components.
For example, if your algorithm returns a Boolean, you should prove that its TRUE answers
are correct and that its FALSE answers are correct. If your algorithm returns a number, you
should prove that number is neither too large nor too small.

e The running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in your flow network.

e You may assume that maximum flows can be computed in O(V E) time. Minimum-cost flows
can be computed in O(E?log? V) time. Do not regurgitate the maximum flow algorithm
itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-
disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard graph
problems (for example: reachability, minimum spanning tree, shortest paths) have similar require-
ments.




1. The Computer Science Department at UIUC has n professors. They handle department
duties by taking part in various committees. There are m committees and the j'th committee
requires k; professors. The head of the department asked each professor to volunteer for a set
of committees. Let S; C {1,2,...,m} be the set of committees that professor i has volunteered
for. A committee assignment consists of sets S7,55,...,5), where S/ C {1,2,...,m} is the
set of committees that professor i will participate in. A walid committee assignment has
to satisfy two constraints: (i) for each professor i, S, C S;, that is each professor is only
given committees that he/she has volunteered for, and (ii) each committee j has k; professors
assigned to it, or in other words j occurs in at least k; of the sets S7,55,...,5,.

(a) Not to submit: Describe a polynomial time algorithm that the head of the department
can employ to check if there is a valid committee assignment given m, k1, ko, ..., ky, the
requirements for the committees, and the lists S1,59,...,S5,. The algorithm should
output a valid assignment if there is one.

(b) The head of the department notices that often there is no valid committee assignment
because professors naturally are inclined to volunteer for as few committees as possible.
To overcome this, the definition of a valid assignment is relaxed as follows. Let ¢ be
some integer. An assignment S7,5%,...,5], is now said to be valid if (i) |S] — S;| < ¢
and (ii) each committee j has k; professors assigned to it. The new condition (i) means
that a professor ¢ may be assigned up to ¢ committees not on the list S; that he/she
volunteered for. Describe an algorithm to check if there is a valid committee assignment
with the relaxed definition.

2. Let G = (V, E) be a directed graph and let C = {C1,Cs,...,Cy} be a collection of cycles in
G. We say that C is a cycle partition of G if each vertex of V is in exactly one of the cycles.
In other words the cycles of C are vertex disjoint and together contain all vertices. Describe
an algorithm that given G decides whether G contains a cycle partition. Follow the two steps
below.

(a) Argue that a set of edges E’ C F forms a cycle partition if and only if each vertex v has
exactly one incoming edge and one outgoing edge in E'.

(b) Use bipartite matching to check if there is an E’ C FE satisfying the property in the
previous part.

3. Suppose we are given an n x n grid, some of whose cells are marked; the grid is represented
by an array M[1..n,1..n] of booleans, where M[i, j| = True if and only if cell (4, j) is marked.
A monotone path through the grid starts at the top-left cell, moves only right or down at
each step, and ends at the bottom-right cell. Our goal is to cover the marked cells with as
few monotone paths as possible.

e Not to submit: Describe an algorithm to find a monotone path that covers the largest
number of marked cells.

e Not to submit: There is a natural greedy heuristic to find a small cover by monotone
paths: If there are any marked cells, find a monotone path II that covers the largest
number of marked cells, unmark any marked cells covered by II, and recurse. Show that
this algorithm does not always compute an optimal solution.
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Greedily covering the marked cells in a grid with four monotone paths.

e Describe and analyze an efficient algorithm to compute the smallest set of monotone
paths that covers every marked cell.

The remaining problems are for self study. Do NOT submit for grading.

e See Problem 3 in HW 6 and all problems in HW 7 from Jeff’s home work last spring. https:
//courses.engr.illinois.edu/cs473/sp2016/hw/hw7 .pdf

e Klenberg-Tardos Chapter 7 is an excellent source on network flow and has many nice problems
starting with basic ones to advanced ones. There are several nice problems on reductions to
network flow.

e Jeff’s notes on network flow applications also has a good collection or problems.
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