Binomials, Derangements, and Catalan Numbers

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

Your Objectives:

- Know how to calculate and use these sequences:
- Fibonacci
- Binomial Coefficients
- Derangements
- Catalan Numbers
- We've talked about Fibonacci numbers already, but one tidbit:
- Every positive integer $n=f_{i}+f_{j}$ where $i+1>j$. Try proving it!
- Use a greedy algorithm to find f_{i} and f_{j}.

Binomial Coefficients

- Coefficients of the expansion of $(x+y)^{n}$
e.g. $(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
- Number of ways to chose k items from n objects. (k starts at $0 . .$.)
- The formula: $C(n, k)=\frac{n!}{k!(n-k)!}$
- The recurrence: "either take or ignore an item" $C(n, 0)=C(n, n)=1$
$C(n, k)=C(n-1, k-1)+C(n-1, k)$
- Use DP if you need a lot, but not all, of these numbers.

Derangements

- Number of permutations of n is n !.
- But... how many ways are there to make a permutation such that no element is in its original spot?
- Written !n

$$
\begin{aligned}
& !0=0 \\
& !1=0 \\
& !n=(n-1) *(!(n-1)+!(n-2))
\end{aligned}
$$

- $!2=1,!3=2,!4=9,!5=44,!6=265, \ldots$
- Not that common, but easy to code with DP.

Catalan Numbers

- This sequence has a lot of isomorphisms.
- $\operatorname{Cat}(n)=C(2 \times n, n) /(n+1) ; \operatorname{Cat}(0)=1$
- Recursively: $\operatorname{Can}(n+1)=\frac{(2 n+2)(2 n+1)}{(n+2)(n+1)} \operatorname{Cat}(n)$
- $\operatorname{Cat}(0)=1, \operatorname{Cat}(1)=1, \operatorname{Cat}(2)=2, \operatorname{Cat}(3)=5, \operatorname{Cat}(4)=14, \ldots$
- Some things Catalan numbers count:
- Cat(n) - Number of distinct binary trees with n vertices.
- Number of ways $n+1$ factors can be completely parethesized: $a b c d=a(b(c d))=((a b) c) d=(a b)(c d)=a((b c) d)=(a(b c)) d$
- Number of ways a convex polygon can be triangulated.

