

Introduction O	Fibonacci Numbers	Binomial Coefficients O	Derangements O	Catalan Numbers O	Introduction O	Fibonacci Numbers O	Binomial Coefficients	Derangements O	Catalan Numbers O

Zeckenorf's Theorem

- We've talked about Fibonacci numbers already, but one tidbit:
- Every positive integer $n = f_i + f_j$ where i + 1 > j. Try proving it!
- Use a greedy algorithm to find f_i and f_j .

Binomial Coefficients

- Coefficients of the expansion of $(x + y)^n$ e.g. $(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$
- Number of ways to chose k items from n objects. (k starts at 0...)
- ▶ The formula: $C(n,k) = \frac{n!}{k!(n-k)!}$
- ► The recurrence: "either take or ignore an item" C(n,0) = C(n,n) = 1C(n,k) = C(n-1,k-1) + C(n-1,k)
- Use DP if you need a lot, but not all, of these numbers.

Introduction	Fibonacci Numbers	Binomial Coefficients	Derangements	Catalan Numbers	Introduction	Fibonacci Numbers	Binomial Coefficients	Derangements	Catalan Numbers
0	0	0	•	0	0	0	0	0	•

Catalan Numbers

Derangements

- ▶ Number of permutations of *n* is *n*!.
- But... how many ways are there to make a permutation such that no element is in its original spot?
- ► Written !*n*

$$\begin{array}{rcl}
!0 &= & 0 \\
!1 &= & 0 \\
!n &= & (n-1) * (!(n-1)+!(n-2))
\end{array}$$

- $\blacktriangleright \ !2 = 1, !3 = 2, !4 = 9, !5 = 44, !6 = 265, \dots$
- ► Not that common, but easy to code with DP.

► This sequence has a *lot* of isomorphisms.

- $Cat(n) = C(2 \times n, n)/(n+1); Cat(0) = 1$
- Recursively: $Can(n + 1) = \frac{(2n+2)(2n+1)}{(n+2)(n+1)}Cat(n)$
- Cat(0) = 1, Cat(1) = 1, Cat(2) = 2, Cat(3) = 5, Cat(4) = 14, ...
- Some things Catalan numbers count:
 - Cat(n) Number of distinct binary trees with n vertices.
 - Number of ways n + 1 factors can be completely parethesized: abcd = a(b(cd)) = ((ab)c)d = (ab)(cd) = a((bc)d) = (a(bc))d
 - Number of ways a convex polygon can be triangulated.

◆□▶◆@▶◆≧▶◆≧▶ ≧ のへで