Introduction	Fibonacci Numbers	Binomial Coefficients	Derangements	Catalan Numbers
0	0	0	0	0

Binomials, Derangements, and Catalan Numbers

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ● ●

	Introduction	Fibonacci Numbers	Binomial Coefficients	Derangements	Catalan Numbers
• 0 0 0	•	0	0	0	0

(ロ) (型) (E) (E) (E) (O)(C)

Objectives

Your Objectives:

- Know how to calculate and use these sequences:
 - Fibonacci
 - Binomial Coefficients
 - Derangements
 - Catalan Numbers

Introduction	Fibonacci Numbers	Binomial Coefficients	Derangements	Catalan Numbers
0	•	0	0	0

Zeckenorf's Theorem

- We've talked about Fibonacci numbers already, but one tidbit:
- Every positive integer $n = f_i + f_j$ where i + 1 > j. Try proving it!
- Use a greedy algorithm to find f_i and f_j .

Binomial Coefficients

- Coefficients of the expansion of (x + y)ⁿ
 e.g. (x + y)⁴ = x⁴ + 4x³y + 6x²y² + 4xy³ + y⁴
- Number of ways to chose k items from n objects. (k starts at 0...)

• The formula:
$$C(n,k) = \frac{n!}{k!(n-k)}$$

The recurrence: "either take or ignore an item"

$$C(n,0) = C(n,n) = 1$$

 $C(n,k) = C(n-1,k-1) + C(n-1,k)$

Use DP if you need a lot, but not all, of these numbers.

Introduction	Fibonacci Numbers	Binomial Coefficients	Derangements	Catalan Numbers
0	0	0	•	0

Derangements

- ▶ Number of permutations of *n* is *n*!.
- But... how many ways are there to make a permutation such that no element is in its original spot?
- ► Written !*n*

$$\begin{array}{rcl}
!0 &= & 0 \\
!1 &= & 0 \\
!n &= & (n-1) * (!(n-1) + !(n-2))
\end{array}$$

 $\blacktriangleright \ !2 = 1, !3 = 2, !4 = 9, !5 = 44, !6 = 265, \dots$

Not that common, but easy to code with DP.

Introduction	Fibonacci Numbers	Binomial Coefficients	Derangements	Catalan Numbers
0	0	0	0	•

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Catalan Numbers

- This sequence has a lot of isomorphisms.
- $Cat(n) = C(2 \times n, n)/(n+1); Cat(0) = 1$
- Recursively: $Can(n + 1) = \frac{(2n+2)(2n+1)}{(n+2)(n+1)}Cat(n)$
- $\blacktriangleright \ {\it Cat}(0) = 1, {\it Cat}(1) = 1, {\it Cat}(2) = 2, {\it Cat}(3) = 5, {\it Cat}(4) = 14, \ldots$
- Some things Catalan numbers count:
 - Cat(n) Number of distinct binary trees with n vertices.
 - Number of ways n + 1 factors can be completely parethesized: abcd = a(b(cd)) = ((ab)c)d = (ab)(cd) = a((bc)d) = (a(bc))d
 - Number of ways a convex polygon can be triangulated.