Objectives

Euclid's Algorithms

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

Your Objectives:

- Be able to calculate the GCD of two numbers using Euclid's algorithm.
- Use the extended Euclid's algorithm to solve Linear Diophantine equations.

Calculating the GCD

- Let $a>b>0$.
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, \bmod (a, b))$
- Why?

Calculating the GCD

- Let $a>b>0$.
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, \bmod (a, b))$
- Fact 1: if $g \mid a$ and $g \mid b$ then $g \mid(a+b)$ and $g \mid(a-b)$
- So, we could use $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$

Calculating the GCD

- Let $a>b>0$.
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, \bmod (a, b))$
- Why?
- Fact 1 : if $g \mid a$ and $g \mid b$ then $g \mid(a+b)$ and $g \mid(a-b)$
- So, we could use $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$
- That would be slow, so how about $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-n b)$, where
$n>0$ anda $-n b>0$ and minimal.

Calculating the GCD

- Let $a>b>0$.
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, \bmod (a, b))$
- Why?
- Fact 1 : if $g \mid a$ and $g \mid b$ then $g \mid(a+b)$ and $g \mid(a-b)$
- So, we could use $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$
- That would be slow, so how about $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-n b)$, where
$n>0$ anda $-n b>0$ and minimal.
- Easy! Just let $n=\bmod (a, b)$

Introduction -	Euclid's Algorithm	Extended Euclidean Algorithm 00000	Introduction -	$\underbrace{\text { oon }}_{\text {Euclid's Algorithm }}$	Extended Euclidean Algorithm $\bullet 0000$

An example

$$
\begin{gathered}
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, \bmod (a, b))=\operatorname{gcd}(90,25) \\
=\operatorname{gcd}(25,15) \\
=\operatorname{gcd}(15,10) \\
=\operatorname{gcd}(10,5) \\
=\operatorname{gcd}(5,0) \\
=5
\end{gathered}
$$

Diophantine Equations

- A Diophantine Equation is a polynomial equation where we are only interested in integer solutions.
- Linear Diophantine equation: $a x+b y=1$,
- It doesn'† have to be 1....
- Running example: Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?

How to do it

- We want: $a x+b y=g$, where $g=\operatorname{gcd}(a, b)$. We know a, b, and we calculate g. How can we get x and y ?
- Suppose we had:

$$
b x_{1}+(a \bmod b) y_{1}=g
$$

Introduction
0

How to do it

- We want: $a x+b y=g$, where $g=\operatorname{gcd}(a, b)$. We know a, b, and we calculate g. How can we get x and y ?
- Suppose we had:

$$
b x_{1}+(a \bmod b) y_{1}=g
$$

- Then take $a \bmod b=a-\left\lfloor\frac{a}{b}\right\rfloor * b$ This gives:

$$
b x_{1}+\left(a-\left\lfloor\frac{a}{b}\right\rfloor * b\right) y_{1}=g
$$

How to do it

- We want: $a x+b y=g$, where $g=\operatorname{gcd}(a, b)$. We know a, b, and we calculate g. How can we get x and y ?
- Suppose we had:

$$
b x_{1}+(a \bmod b) y_{1}=g
$$

- Then take $a \bmod b=a-\left\lfloor\frac{a}{b}\right\rfloor * b$ This gives:

$$
b x_{1}+\left(a-\left\lfloor\frac{a}{b}\right\rfloor * b\right) y_{1}=g
$$

- Rearrange a bit.

$$
b x_{1}+a y_{1}-\left\lfloor\frac{a}{b}\right\rfloor b y_{1}=g \quad \Rightarrow \quad a y_{1}+b\left(x_{1}-\left\lfloor\frac{a}{b}\right\rfloor y_{1}\right)=g
$$

How to do it

- We want: $a x+b y=g$, where $g=\operatorname{gcd}(a, b)$. We know a, b, and we calculate g. How can we get x and y ?
- Suppose we had:

$$
b x_{1}+(a \bmod b) y_{1}=g
$$

- Then take $a \bmod b=a-\left\lfloor\frac{a}{b}\right\rfloor * b$ This gives:

$$
b x_{1}+\left(a-\left\lfloor\frac{a}{b}\right\rfloor * b\right) y_{1}=g
$$

- Rearrange a bit..

$$
b x_{1}+a y_{1}-\left\lfloor\frac{a}{b}\right\rfloor b y_{1}=g \quad \Rightarrow \quad a y_{1}+b\left(x_{1}-\left\lfloor\frac{a}{b}\right\rfloor y_{1}\right)=g
$$

- This in turn gives us:

$$
\begin{aligned}
& x=y_{1} \\
& y=x_{1}-\left\lfloor\frac{a}{b}\right\rfloor y_{1}
\end{aligned}
$$

The Code

$$
\begin{aligned}
& x=y_{1} \\
& y=x_{1}-\left\lfloor\frac{a}{b}\right\rfloor y_{1}
\end{aligned}
$$

```
0// Stolen from Competitive Programming 3
1// store \(x, y\), and \(d\) as global variables
2 void extendedEuclid(int \(a\), int \(b\) ) \{
        if ( \(\mathrm{b}==0\) ) \(\{\mathrm{x}=1 ; \mathrm{y}=0 ; \mathrm{d}=\mathrm{a}\); return; \(\}\)
        extendedEuclid(b, a \% b);
        // similar as the original gcd
        int \(\mathrm{x} 1=\mathrm{y}\);
        int \(\mathrm{y} 1=\mathrm{x}-(\mathrm{a} / \mathrm{b}) * \mathrm{y}\);
        \(\mathrm{x}=\mathrm{x} 1\);
        \(y=y 1 ;\)
\(10\}\)
```

Introduction

0 \quad| Euclid's Algorithm |
| :--- |
| 00 |

An Example

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?

\mathbf{a}	\mathbf{b}	\mathbf{x}	\mathbf{y}	$a \times x+b \times y=3$
72	33			
33	6			
6	3			
3	0			

An Example

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?

\mathbf{a}	\mathbf{b}	\mathbf{x}	\mathbf{y}	$\mathbf{a} \times x+b \times y=3$
72	33			
33	6			
6	3			
3	0	1	0	$3 \times 1+0 \times 0=3$

An Example

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?

$$
\begin{array}{lllll}
\mathbf{a} & \mathbf{b} & \mathbf{x} & \mathbf{y} & a \times x+b \times y=3 \\
\hline 72 & 33 & & & \\
33 & 6 & & & \\
6 & 3 & 0 & 1 & 6 \times 0+3 \times 1=3 \\
3 & 0 & 1 & 0 & 3 \times 1+0 \times 0=3
\end{array}
$$

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?

\mathbf{a}	\mathbf{b}	\mathbf{x}	\mathbf{y}	$a \times x+b \times y=3$
72	33			
33	6	1	-5	$33 \times 1+6 \times-5=3$
6	3	0	1	$6 \times 0+3 \times 1=3$
3	0	1	0	$3 \times 1+0 \times 0=3$

Introduction	
0	Eucli's's Algorithm 00
Extended Euclidean Algorithm $000 \bullet 0$	

An Example

Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?

$$
\begin{array}{lllll}
\mathbf{a} & \mathbf{b} & \mathbf{x} & \mathbf{y} & a \times x+b \times y=3 \\
\hline 72 & 33 & -5 & 11 & 72 \times-5+33 \times 11=3 \\
33 & 6 & 1 & -5 & 33 \times 1+6 \times-5=3 \\
6 & 3 & 0 & 1 & 6 \times 0+3 \times 1=3 \\
3 & 0 & 1 & 0 & 3 \times 1+0 \times 0=3
\end{array}
$$

An example, ctd.

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?
- Running the algorithm, we get...

$$
72 \times-5+33 \times 11=3
$$

- We multiple both sides by 195 (since $585=3 \times 195$) This gives us...

$$
72 \times-975+33 \times 2145=3
$$

An example, ctd.

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?
- Running the algorithm, we get..

$$
72 \times-5+33 \times 11=3
$$

- We multiple both sides by 195 (since $585=3 \times 195$) This gives us...

$$
72 \times-975+33 \times 2145=3
$$

- We can add $72\left(\frac{33}{3}\right) n$ to the 72 term and subtract $33\left(\frac{72}{3}\right) n$ from the second term and still have a valid equation.
Introduction
0

An example, ctd

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?
- Running the algorithm, we get..

$$
72 \times-5+33 \times 11=3
$$

- We multiple both sides by 195 (since $585=3 \times 195$) This gives us...

$$
72 \times-975+33 \times 2145=3
$$

- We can add $72\left(\frac{33}{3}\right) n$ to the 72 term and subtract $33\left(\frac{72}{3}\right) n$ from the second term and still have a valid equation.Solve $-975+11 n>0$, this reduces to $n>88.6$. So take $n=89$.
- This gives us the final equation

$$
72 \times 4+33 \times 9=585
$$

An example, ctd.

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend $\$ 5.85$. How many of each did you buy?
- Running the algorithm, we get...

$$
72 \times-5+33 \times 11=3
$$

- We multiple both sides by 195 (since $585=3 \times 195$) This gives us...

$$
72 \times-975+33 \times 2145=3
$$

- We can add $72\left(\frac{33}{3}\right) n$ to the 72 term and subtract $33\left(\frac{72}{3}\right) n$ from the second term and still have a valid equation.
- Solve $-975+11 n>0$, this reduces to $n>88.6$. So take $n=89$.

