Euclid's Algorithms

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

(ロ) (型) (E) (E) (E) (O)(C)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Objectives

Your Objectives:

- Be able to calculate the GCD of two numbers using Euclid's algorithm.
- Use the extended Euclid's algorithm to solve Linear Diophantine equations.

- Let a > b > 0.
- $\blacktriangleright gcd(a,b) = gcd(b,mod(a,b))$
- ► Why?

- Let a > b > 0.
- $\blacktriangleright gcd(a,b) = gcd(b,mod(a,b))$
- ► Why?
- Fact 1: if g|a and g|b then g|(a + b) and g|(a b)
- So, we could use gcd(a,b) = gcd(a-b,b)

- Let a > b > 0.
- $\blacktriangleright gcd(a,b) = gcd(b,mod(a,b))$
- ► Why?
- Fact 1: if g|a and g|b then g|(a + b) and g|(a b)
- So, we could use gcd(a,b) = gcd(a-b,b)
- That would be slow, so how about gcd(a,b) = gcd(b,a-nb), where n > 0 and a nb > 0 and minimal.

- Let a > b > 0.
- $\blacktriangleright gcd(a,b) = gcd(b,mod(a,b))$
- ► Why?
- Fact 1: if g|a and g|b then g|(a + b) and g|(a b)
- So, we could use gcd(a,b) = gcd(a-b,b)
- That would be slow, so how about gcd(a,b) = gcd(b,a-nb), where n > 0 and a nb > 0 and minimal.
- Easy! Just let n = mod(a, b)

An example

$$gcd(a,b) = gcd(b,mod(a,b)) = gcd(90,25)$$

= $gcd(25,15)$
= $gcd(15,10)$
= $gcd(10,5)$
= $gcd(5,0)$
= 5

<□> <0<>

Diophantine Equations

- A *Diophantine Equation* is a polynomial equation where we are only interested in integer solutions.
- Linear Diophantine equation: ax + by = 1,
- It doesn't have to be 1....
- Running example: Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend \$5.85. How many of each did you buy?

Introduction O	Euclid's Algorithm 00	Extended Euclidean Algorithm

We want: ax + by = g, where g = gcd(a, b). We know a, b, and we calculate g. How can we get x and y?

Introduction	Euclid's Algorithm	Extended Euclidean Algorithm
0	00	0000

- We want: ax + by = g, where g = gcd(a, b). We know a, b, and we calculate g. How can we get x and y?
- Suppose we had:

 $bx_1 + (a \mod b)y_1 = g$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Introduction	Euclid's Algorithm	Extended Euclidean Algorithm
0	00	00000

- We want: ax + by = g, where g = gcd(a, b). We know a, b, and we calculate g. How can we get x and y?
- Suppose we had:

 $bx_1 + (a \mod b)y_1 = g$

• Then take a mod $b = a - \lfloor \frac{a}{b} \rfloor * b$ This gives:

$$bx_1 + (a - \left\lfloor \frac{a}{b} \right\rfloor * b)y_1 = g$$

Introduction	Euclid's Algorithm	Extended Euclidean Algorithm
0	00	0000

- We want: ax + by = g, where g = gcd(a, b). We know a, b, and we calculate g. How can we get x and y?
- Suppose we had:

 $bx_1 + (a \mod b)y_1 = g$

• Then take a mod $b = a - \lfloor \frac{a}{b} \rfloor * b$ This gives:

$$bx_1 + (a - \left\lfloor \frac{a}{b} \right\rfloor * b)y_1 = g$$

Rearrange a bit..

$$bx_1 + ay_1 - \left\lfloor \frac{a}{b} \right\rfloor by_1 = g \quad \Rightarrow \quad ay_1 + b(x_1 - \left\lfloor \frac{a}{b} \right\rfloor y_1) = g$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Euclid's Algorithm	Extended Euclidean Algorithm
0	00	0000

- We want: ax + by = g, where g = gcd(a, b). We know a, b, and we calculate g. How can we get x and y?
- Suppose we had:

 $bx_1 + (a \mod b)y_1 = g$

• Then take a mod $b = a - \lfloor \frac{a}{b} \rfloor * b$ This gives:

$$bx_1 + (a - \left\lfloor \frac{a}{b} \right\rfloor * b)y_1 = g$$

Rearrange a bit..

$$bx_1 + ay_1 - \left\lfloor \frac{a}{b} \right\rfloor by_1 = g \quad \Rightarrow \quad ay_1 + b(x_1 - \left\lfloor \frac{a}{b} \right\rfloor y_1) = g$$

This in turn gives us:

$$\begin{array}{ll} x = & y_1 \\ y = & x_1 - \left\lfloor \frac{a}{b} \right\rfloor y_1 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

<□> < @> < E> < E> E のQ@

The Code

$$x = y_1$$

$$y = x_1 - \lfloor \frac{a}{b} \rfloor y_1$$

o// Stolen from Competitive Programming 3
1// store x, y, and d as global variables
2void extendedEuclid(int a, int b) {
3 if (b == 0) { x = 1; y = 0; d = a; return; }
4 extendedEuclid(b, a % b);
5 // similar as the original gcd
6 int x1 = y;
7 int y1 = x - (a / b) * y;
8 x = x1;
9 y = y1;
10}

An Example

Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend \$5.85. How many of each did you buy?

a b x y *a* × *x* + *b* × *y* = 3 72 33 33 6 6 3 3 0

An Example

а	b	x	у	$a \times x + b \times y = 3$
72	33			
33	6			
6	3			
3	0	1	0	$3 \times 1 + 0 \times 0 = 3$

An Example

а	b	x	у	$a \times x + b \times y = 3$
72	33			
33	6			
6	3	0	1	$6 \times 0 + 3 \times 1 = 3$
3	0	1	0	$3 \times 1 + 0 \times 0 = 3$

An Example

а	b	x	у	$a \times x + b \times y = 3$
72	33			
33	6	1	-5	$33\times1+6\times-5=3$
6	3	0	1	$6 \times 0 + 3 \times 1 = 3$
3	0	1	0	$3 \times 1 + 0 \times 0 = 3$

An Example

а	b	x	у	$a \times x + b \times y = 3$
72	33	-5	11	$72 \times -5 + 33 \times 11 = 3$
33	6	1	-5	$33\times1+6\times-5=3$
6	3	0	1	$6 \times 0 + 3 \times 1 = 3$
3	0	1	0	$3 \times 1 + 0 \times 0 = 3$

Introduction	Euclid's Algorithm	Extended Euclidean Algorithm
O	00	0000●

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend \$5.85. How many of each did you buy?
- Running the algorithm, we get...

 $72 \times -5 + 33 \times 11 = 3$

• We multiple both sides by 195 (since $585 = 3 \times 195$) This gives us...

 $72 \times -975 + 33 \times 2145 = 3$

Introduction	Euclid's Algorithm	Extended Euclidean Algorithm
O	00	0000●

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend \$5.85. How many of each did you buy?
- Running the algorithm, we get...

 $72 \times -5 + 33 \times 11 = 3$

• We multiple both sides by 195 (since $585 = 3 \times 195$) This gives us...

 $72 \times -975 + 33 \times 2145 = 3$

• We can add $72(\frac{33}{3})n$ to the 72 term and subtract $33(\frac{72}{3})n$ from the second term and still have a valid equation.

Introduction O	Euclid's Algorithm 00	Extended Euclidean Algorithm

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend \$5.85. How many of each did you buy?
- Running the algorithm, we get...

 $72 \times -5 + 33 \times 11 = 3$

• We multiple both sides by 195 (since $585 = 3 \times 195$) This gives us...

 $72 \times -975 + 33 \times 2145 = 3$

- We can add $72(\frac{33}{3})n$ to the 72 term and subtract $33(\frac{72}{3})n$ from the second term and still have a valid equation.
- Solve -975 + 11n > 0, this reduces to n > 88.6. So take n = 89.

Introduction O	Euclid's Algorithm 00	Extended Euclidean Algorithm

- Suppose you go to the store. You buy x apples at 72 cents each and y oranges at 33 cents each. You spend \$5.85. How many of each did you buy?
- Running the algorithm, we get...

 $72 \times -5 + 33 \times 11 = 3$

• We multiple both sides by 195 (since $585 = 3 \times 195$) This gives us...

 $72 \times -975 + 33 \times 2145 = 3$

- We can add $72(\frac{33}{3})n$ to the 72 term and subtract $33(\frac{72}{3})n$ from the second term and still have a valid equation.
- Solve -975 + 11n > 0, this reduces to n > 88.6. So take n = 89.
- This gives us the final equation

$$72 \times 4 + 33 \times 9 = 585$$