
First Order Logic

Mahesh Viswanathan

Fall 2018

First order logic is a formal language to describe and reason about predicates. Modern efforts to study
this logic grew out of a desire to study the foundations of mathematics in number theory and set theory.
It has a creaful treatment of functions, variables, and quantification. First order logic deals with predicates
as opposed to propositions — which are declarative statements that are either true or false — which is
the subject of study in propositional logic. A predicate is a group of words that qualify on or more names
of individuals. Examples of predicates include “is a man”, “is less than”, “is instructor of”. Applied to
individuals, it forms statements that may be true or false — “John is a man”, “4 is less than 3 ”, “Mahesh
is instructor of CS498MV ”. Constants are names of individuals to whome predicates can be applied. The
distiguishing features of first order logic is the use of quantifiers, that allow one to state whether something
holds for some or all individuals.

1 Syntax

First order logic formulas are defined over a vocabulary or signature that identifies the predicates and
constants that can be used in the formulas.

Definition 1. A vocabulary or signature is τ = (C,R), where C = {c1, c2, . . .} is a set of constant symbols,
and R = {Rk}k is a collection of sets with Rk = {Rk1 , Rk2 , . . .} is a set of k-ary relation symbols.

Note that any of the above sets of constants, or k-ary relation symbols can be empty, finite, or infinite.
A signature will be called relational if there are no constant symbols in the signature. A signature is finite
if the toal number of symbols in the signature is finite.

We will typically consider signatures that are finite. When the arity of a relation symbol is clear from
the context, we will drop the superscript.

Formulas in first-order logic over signature τ are sequences of symbols, where each symbols is one of the
following.

1. The symbol ⊥ called false and the symbol =

2. An element of the infinite set V = {x1, x2, x3, . . .} of variables

3. Constant symbols and relation symbols in τ

4. The symbol → called implication

5. The symbol ∀ called the universal quantifier

6. The symbols (and) called parenthesis

As always, not all such sequences are formulas; only well formed sequences are formulas in the logic. This
si defined as follows.

Definition 2. A well formed formula (wff) over signature τ is inductively defined as follows.

1

1. ⊥ is a wff.

2. If t1, t2 are either variables or constant symbols in τ then t1 = t2 is a wff.

3. If ti is either a variable or a constant for 1 ≤ i ≤ k and R is a k-ary relation symbol in τ then Rt1t2 · · · tk
is a wff.

4. If ϕ and ψ are wffs then (ϕ→ ψ) is a wff.

5. If ϕ is a wff and x is a variable then (∀xϕ) is a wff.

Example 3. Consider signature τ = {R} where R is a binary relation symbol. The following are formulas
over this signature.

• Reflexivity: ∀xRxx

• Irreflexivity: ∀x(Rxx→ ⊥)

• Symmetry: ∀x(∀y(Rxy → Ryx))

• Anti-symmetry: ∀x(∀y(Rxy → (Ryx→ x = y)))

• Transitivity: ∀x(∀y(∀z(Rxy → (Ryz → Rxz))))

Non-examples of formulas include Rx (R expects two arguments); x (a variable is not a formula); (Rxy →
Rzx (mismatched parentheses); ∀x (x is quantified but there is no formula provided as argument).

It is useful to introduce logical operators in addition to those in Definition 2. These operators can be
“syntactically” defined in terms of the operators in Definition 2. As in propositional logic, we can define
the Boolean connectives negation as ¬ϕ = (ϕ → ⊥), disjunction as ϕ ∨ ψ = ((¬ϕ) → ψ), conjunction
as ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ)), and true as > = ¬⊥. Finally, we can define existential quantification as
(∃xϕ) = ¬(∀x(¬ϕ)).

To avoid the clutter of parenthesis, and at the same time have an unambiguous interpretation of formulas,
we will assume the following precedence of operators (from increasing to decreasing): ¬, ∧, ∨, →, ∀. Thus
∀x∀yx = y → ¬Rxy means (∀x(∀yx = y → (¬Rxy))).

2 Semantics

The semantics of formulas in any logic is defined with respect to a model. In the context of propositional
logic, models were nothing but truth assignments to the propositions. For first order logic, models will
objects that help identify the interpretation of constants and relation symbols. Such models are typically
called structures.

Definition 4. A structure A of signature τ is A = (A, {cA}c∈τ , {RA}R∈τ) where

• A is a non-empty set called the domain/universe of the structure,

• For each constant symbol c ∈ τ , cA ∈ A is its interpretation,

• For each k-ary relation symbol R ∈ τ , RA ∈ Ak is its interpretation.

The structure A is said to be finite if the universe A is finite. The universe of a structure A will be
denoted by u(A).

Many mathematical objects can be studied through the lens of logic. Let us look at some example
signatures and structures that will play an important role in the rest of the course.

2

0 0 1 0

1 0

1

Figure 1: Example of labeled binary tree

Example 5. Consider the signature τ = {E}, where E is a binary relation. We use this signature to study
graphs. A graph H = (V,E) modeled as a structure is G = (G,EG), where the universe G is the set of
vertices V , and for a pair of vertices u, v ∈ G (= V), EGuv 1 holds iff (u, v)inE.

Example 6. Let τO = {<,S} where < and S are binary relation symbols. A finite order structure is
O = (O,<O, SO), where O is the universe of elements, < is interpreted to be an ordering relation, and S as
the “successor” relation.

Example 7. Words over an alphabet Σ can be viewed as a first order structure. Let τW = {<,S, {Qa}a∈Σ}
where <,S are binary relation symbols, and Qa is unary relation symbol for every a in alphabet Σ. A word
structure is W = (W,<W , SW , (QWa)a∈Σ), where W is the set of positions in the word, < is an order on
positions, S is successor relation, Qa holds in all positions that are labeled a.

For example, let us consider Σ = {0, 1} and the word w = 010110. The w can be represented as a
structure as follows. The signature (since σ = {0, 1}) is τ = {<,S,Q0, Q1}. The structure for w is

W = ({1, 2, 3, 4, 5, 6},
<W= {(1, 2), (1, 3), . . . (1, 6), (2, 3), . . . (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)},
SW = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)},
Q0 = {1, 3, 6},
Q1 = {2, 4, 5}).

Notice that though we took the positions of the word to be 1, 2, 3, 4, 5, 6, we could have taken the positions
to be any set of 6 elements.

Example 8. Labeled binary trees, where vertices are labeled by elements of Σ, can be represented as a
structure. Let τT = {<,S0, S1, (Qa)a∈Σ} where <,S0, S1 are binary relation symbols, Qa is a unary relation
symbol. A tree (labeled by symbols in Σ) is a structure T = (T,<T , ST0 , S

T
1 , (Q

T
a)a∈Σ) where elements of T

are called vertices, < is a ancestor relation, S0 and S1 are the left and right child relations, respectively, and
Qa holds in all vertices labeled by a.

For example, consider the binary tree shown in Figure 1. Let us see how this tree is represented as a
structure. The universe will consist of the vertices of the tree. We could use any names for the vertices.
But it is convenient to name them in a manner that makes the edge relation explicit — the root will be ε,
and for a vertex w, its left child will be w0, while its right child will be w1. Given this, the tree in Figure 1
corresponds to the following structure. T = ({ε, 0, 1, 00, 01, 10, 11}, <T = {(u, uv) |v 6= ε}, ST0 = {(u, u0) |u ∈
{ε, 0, 1}}, ST1 = {(u, u1) | u ∈ {ε, 0, 1}}, Q0 = {1, 00, 01, 11}, Q1 = {ε, 0, 10}).

In order to define the semantics of a first order logic formula, we need a structure, and an assignment.
An assignment maps every variable to an element in the universe of the structure.

Definition 9. For a τ -structure A, an assignment over A is a function α : V → u(A) that assigns every
variable x ∈ V a value α(x) ∈ u(A). If t is a constant symbol c, we will take α(t) to be cA.

For an assignment α over A, α[x 7→ a] is the assignment

α[x 7→ a](y) =

{
α(y) for y 6= x
a when x = y

1For a relation symbol R, we will sometimes write RAa1a2 · · · an instead of (a1, a2, . . . an) ∈ RA.

3

We now have all the elements to define the semantics of a formula. The satisfaction relation will be a
ternary relation — A |= ϕ[α] to be read as “ϕ is true/holds in A under assignment α”. The relation will be
defined inductively on the structure of the formula. In defining the relation, we will also say A 6|= ϕ[α] to
mean that A |= ϕ[α] does not hold.

Definition 10. The relation A |= ϕ[α] is inductively defined as follows.

• A 6|= ⊥[α] for all A and α

• A |= t1 = t2[α] iff α(t1) = α(t2)

• A |= Rt1 · · · tn[α] iff (α(t1), α(t2), . . . α(tn)) ∈ RA

• A |= (ϕ→ ψ)[α] iff A 6|= ϕ[α] or A |= ψ[α]

• A |= (∀xϕ)[α] iff for every a ∈ u(A), A |= ϕ[α[x 7→ a]]

Example 11. Consider G = ({1, 2, 3, 4}, EG = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}). For any assignment
α, G |= ∀x∀y(Exy → Eyx)[α] because

G |= ∀y(Exy → Eyx)[α[x 7→ 1]] because
G |= (Exy → Eyx)[α[x 7→ 1][y 7→ 1]] because
G 6|= Exy[α[x 7→ 1][y 7→ 1]] moreover
G |= (Exy → Eyx)[α[x 7→ 1][y 7→ 2]] because
...

G |= ∀y(Exy → Eyx)[α[x 7→ 2]] because
...

Notice that in Example 11, the actual assignment to variables x and y did not matter when determining
the satisfaction of the formula in the graph. This is because they are bound by the universal quantifiers in
the formula ϕ. This leads us to the important notion of bound and free variables in a formula. We begin by
defining the scope of a quantifier.

Definition 12. For a wff ϕ = ∀xψ, ψ is said to be the scope of the quantifier ∀x.

Definition 13. Every occurrence of the variable x in ∀xψ is called a bound occurrence of x in ϕ.
Any occurrence of x which is not bound is called a free occurrence of x in ϕ.
The free variables in wff ϕ will be denoted by free(ϕ). The notation ϕ(x1, x2, . . . xn) will be used to

indicate that free(ϕ) ⊆ {x1, . . . xn}.

Let us look at an example to understand the subtle definition of bound and free variables.

Example 14. Consider ϕ = Pxy→ (∀x(∀yRxy)→ Qxy) the free variables are shown in bold. Notice that
a variable may occur both bound and free. As we will establish soon, we can change the names of bound
variables without affecting the meaning of formulas. Thus ψ = Pxy→ (∀u(∀vRuv)→ Quy) is an equivalent
formula. Therefore, we will typically assume that bound and free variables are disjoint. In addtion, since
bound variables can be renamed without affecting its meaning, we can also assume that every bound variable
is in the scope of a unique quantifier. Thus, instead of Pxy → (∀u(∀vRuv) → (∀yQuy)), we will consider
the equivalent formula Pxy→ (∀u(∀vRuv)→ (∀zQuz))

The satisfaction of a formula in a structure A under assignment α only depends on the values α assigns
to the free variables; the values assigned to the bound variables in α are unimportant.

Theorem 15. For a formula ϕ and assignments α1 and α2 such that for every x ∈ free(ϕ), α1(x) = α2(x),
A |= ϕ[α1] iff A |= ϕ[α2].

4

Theorem 15 can be proved by induction on the structure of the formula ϕ. The proof is left as an
exercise for the reader. Theorem 15 suggest that if a formula has no free variables, its truth is independent
of the assignment. Formulas without any free variables (i.e., those all of whose variables are bound) are an
important class of formulas and have special name.

Definition 16. A sentence is a formula ϕ none of whose variables are free, i.e., free(ϕ) = ∅.

An immediate consequence of Theorem 15 is that the truth of sentences is independent of the assignment.

Proposition 17. For a sentence ϕ, and any two assignments α1 and α2, A |= ϕ[α1] iff A |= ϕ[α2].

Proposition 17 is an immediate consequence of Theorem 15. Thus, we say A |= ϕ whenever A |= ϕ[α]
for some α.

Definition 18. For a sentence ϕ, A is said to be a model of ϕ iff A |= ϕ. We will denote by [[ϕ]] the set of
all models of ϕ.

Satisfiability and validity/tautologies are defined in a manner similar to that for propositional logic — a
formula is satisfiable if there is some model and assignment in which it is true, and it is valid if it is true in
all models and assignments.

Definition 19. A formula ϕ over signature τ is said to be satisfiable iff for some τ -structureA and assignment
α, A |= ϕ[α].

A formula ϕ over signature τ is said to be logically valid iff for every τ -structure A and assignment α,
A |= ϕ[α]. We will denote this by |= ϕ.

We can also define with a formula ϕ is a logical consequence of a set of formulas Γ in exactly the same
way as we defined it for propositional logic.

Definition 20. For a set of formulas Γ, we say A |= Γ[α] iff for every ϕ ∈ Γ, A |= ϕ[α].
We say ϕ is a logical consequence of Γ, denoted by Γ |= ϕ, if and only if for every A and α, A |= Γ[α]

implies that A |= ϕ[α]. Thus, if ∅ |= ϕ then |= ϕ.

The following observation is an immediate consequence of the definition of logical consequence.

Proposition 21. Γ ∪ {ϕ} |= ψ iff Γ |= ϕ→ ψ

Finally two formulas are (semantically) equivalent, if the hold in exactly the same set of structures and
assignments.

Definition 22. Formulas ϕ and ψ are said to be logically equivalent (denoted ϕ ≡ ψ) if for every A and
assignment α, A |= ϕ[α] iff A |= ψ[α].

3 A Proof System

Is there an “algorithm” to determine if a first order logic formula ϕ is valid? This is the entscheidungsproblem
(“the decision problem”) posed by David Hilbert in 1928. The question predated a mathematical definition
of computation, as in the Turing machine model or related computational models, and so when Hilbert posed
this question, the notion of algorithm was an informal one. The answer to this question is not obvious, unlike
the case of propositional logic. In propositional logic, thanks to the fact satisfaction only depends on the
truth assignments to the variables appearing in the formula, we have an algorithm based on the truth table
method where need to consider only finitely many models before we can sure that a formula is valid. This
no longer holds for first order logic. There are sentences that are only satisfiable in infinite models. Consider
for example the formula ϕ = (∀x¬Rxx) ∧ (∀x∀y∀zRxy ∧ Ryz → Rxz) ∧ (∀x∃yRxy) which says that R is
a irreflexive, transitive binary relation, that is total is only true in an infinite model. Therefore, the only

5

Axioms from Propositional Logic

ϕ→ (ψ → ϕ) (ϕ→ (ψ → ρ))→ ((ϕ→ ψ) → (ϕ→ ρ)) ((ϕ→ ⊥)→ ⊥)→ ϕ

Axioms for Equality

x = x
for any variable x

(t1 = t2)→ ((ϕ→ ψ) ∧ (ψ → ϕ))
where t1, t2 are variables or constant symbols,

and ψ is the result of replacing in ϕ one
occurrence of t1 by t2 such that this occurrence
of t1 is not in the well-formed part of ϕ of
the form ∀t1ϕ′ or ∀t2ϕ′.

Axioms for Quantifiers

(∀xϕ)→ ϕxt
where t is a constant symbol or variable that is free in ϕ

(∀x(ϕ→ ψ))→ (ϕ→ (∀xψ))
where x is a variable that is not free in ϕ.

Rules of Inference
ϕ ϕ→ ψ

ψ
Modus Ponens

ϕ
∀xϕ , x is a variable Generalization

Figure 2: A sound and complete proof system for first order logic.

6

way to determine that ¬ϕ is not valid is to check its truth in infinite models. Thus, the model enumeration
process encapsulated in the truth table method will not yield a decision procedure for first order logic.

Gödel, in his doctoral dissertation, settled the question. He established the soundness and completeness
of a proof system for first order logic. One such proof system for first order logic is shown in Figure 2.

In order to explain the axioms in the proof system, we need to introduce the notion of substitution.

Definition 23. For a wff ϕ, variable x and variable/constant symbol t, ϕxt is the result of replacing every
free occurrence of x in ϕ by t.

Example 24. Let us look at an example to better understand Definition 23. (Pxy → (∀x(∀yRxy)→ Qxy))xz
is the formula (Pzy → (∀x(∀yRxy)→ Qxy)).

On the other hand, (Pxy → (∀x(∀yRxy)→ Qxy))yz if the formula (Pxz → (∀x(∀yRxy)→ Qxz)).

The axiom schemas in our proof system (Figure 2) can be divided into 3 classes — those which pertain
to propositional reasoning, those which pertain to equality, and those which relate to quantifiers. The first
axiom for universal quantifiers, uses the notion of substitution introduced in Definition 23. In addition to
these axiom schemas, the proof system has two rules of inference. One is Modus Ponens which we have seen
in the proof system for propositional logic, and then second is generalization that allows one to introduce
universal quantifiers in the conclusion.

Proofs in our proof system are similar to those for propositional logic — they are sequence of formulas
such that each line in the proof either is a hypothesis, an axiom or follows by a rule of inference. We give a
precise definition for completeness.

Definition 25. A proof of ϕ from a set of hypotheses Γ is a sequence of wffs ψ1, ψ2, . . . ψm such that ψm = ϕ
and for every k ∈ {1, 2, . . .m}

• ψk ∈ Γ, or

• ψk is an axiom, or

• ψk follows from earlier lines in the proof by a rule of inference

If ϕ has a proof from Γ, then ϕ is said to be provable from Γ in the proof system, and this is denoted by
Γ ` ϕ.

As for propositional logic, we would like to argue that the proof system we have presented for first order
logic is sound and complete, i.e., the proof system only proves “true” facts, and that all true facts can be
proved in the system. It turns out this holds and was first proved by Gödel in his doctoral dissertation.

Theorem 26. For a set of formulas Γ and a formula ϕ, Γ |= ϕ if and only if Γ ` ϕ.

The proof of the soundness and completeness theorem for first order logic is a bit more complicated than
that for propositional logic. We will unfortunately not present the proof. However, Theorem 26 has an
important consequence for the entscheidungsproblem.

Corollary 27. The set of valid formulas is recursively enumerable.

Proof. We will present a nondeterministic algorithm that given an input formula ϕ will accept if and only
if ϕ is valid. The nondeterministic algorithm will guess a proof (as sequence of formulas) along with which
rule of the proof system was used. It will then check if the proof is valid and if so, it will accept the input
string ϕ; other wise it will reject it. The important observation is that given a line and whether it is an
axiom or which previous lines of the proof it follows from, it is easy to check if that is indeed the case. The
correctness of this algorithm follows from the completeness theorem.

Gödel’s result establishes that the set of valid first order logic formula is in RE. Is it decidable? In other
words, is the complement of the validity problem also recursively enumerable. This is equivalent to asking
if the satisfiability problem is recursively enumerable — checking if ϕ is not valid is equivalent ot checking
if ¬ϕ is satisfiable! It turns out that this isn’t true. We will establish this in the next section.

7

4 The Church-Turing Theorem

In this section, we will prove the following result.

Theorem 28 (Church-Turing 1936). Given a first order logic formula ϕ, the problem of determining if ϕ
is valid is RE-complete.

Before proving Theorem 28, let us examine the consequences of this observation. Observe that, we had
previously proved that if A is RE-hard then A is not decidable. Thus, we can conclude that the validity
problem for first order logic is undecidable. Because validity is undecidable but recursively enumerable, it
means that the complement of the validity problem (namely, to determine if a given formula ϕ is not valid)
is not recursively enumerable. Determining the non-validity of ϕ is the same as determining the satisfiability
of ¬ϕ. Thus, the satisfiability problem for first order logic is not recursively enumerable.

Corollary 29. The validity problem for first order logic is not decidable. The satisfiabiity problem for first
order logic is not recursively enumerable.

Proof of Theorem 28. Let Valid = {〈ϕ〉 |ϕ is valid}. Membership in RE follows from Corollary 27. So all we
have to establish is RE-hardness.

Consider the language MP and the universal Turing machine U recognizing MP . Without loss of
generality we can assume that U has one worktape (and an input tape); we can ignore the output tape
since we are not computing a function. We can also assume that the input alphabet is Σ = {0, 1} and the
tape alphabet is Γ = {0, 1,B,t}. Let the set of states of U to be Q with initial state q0 and accepting
state qacc, and let δ be its transition function. A configuration of U can be represented as (q, u, v, w, x) with
u, v, w, x ∈ Γ∗ where

• q is the control state of the configuration,

• the input tape is uRvtω with the input head scanning the leftmost symbol of v, and

• the worktape is wRxtω with the worktape head scanning the leftmost symbol of x.

In the above, uR and wR are the strings obtained by reversing the strings u and w, respectively. Given
configurations c1 = (q1, u1, v1, w1, x1) and c2 = (q2, u2, v2, w2, x2), we will say c1 7−→ c2 to indicate that U
can move from configuration c1 to c2 in one step.

We will now prove that MP ≤m Valid; the RE-hardness of MP will enable us to conclude the RE-
hardness of Valid. Consider the signature τ = (ε, {q}q∈Q0, 1,t,B, c), where ε and {q}q∈Q are constant
symbols, 0, 1,t,B are binary relation symbols, and c is a 5-ary relation symbol. We will construct a sentence
F (α) over signature τ such that U accepts α if and only if F (α) is valid. Since U recognizes MP , we have
α ∈ MP iff F (α) is valid. The function F will be computable, and therefore it is a reduction from MP to
Valid establishing the RE-hardness of Valid.

Before explaining the construction, it will be useful to give some intuition behind how we “view” the
symbols in τ . ε is the constant that corresponds to the empty string, q is the constant that corresponds
to the state q of U , and the binary relation symbols a ∈ {0, 1,B,t} will be thought of as follows — if
a(x, y) holds then y is a followed by x. Finally c(q, u, v, w, x) indicates that the configuration (q, u, v, w, x) is
reached at some point during the computation of U on α. This overall intuition is useful to keep in mind as
we describe the construction of F (α). However, it is important to note that an individual τ -structure may
interpret these symbols in any way.

The sentence F (α) = (ϕinit ∧ ϕcomp)→ ϕacc where

• ϕinit states that the initial configuration is reachable in the computation,

• ϕcomp states that if configuration c1 is reachable and c1 7−→ c2 then c2 is reached in the computation,
and

• ϕacc says that an accepting configuration is reached during the computation.

8

Let us see how these individual formulas are constructed.
To describe the construction of ϕinit is useful to introduce the following helper formula. For a string

u ∈ Γ∗, we define a formula stru(x) with free variable x that says that “x is the string u”. This can be
defined inductively as follows.

stru(x) =

{
x = ε if u = ε
∃y. a(y, x) ∧ strv(y) if u = av

Using stru(x), we can define ϕinit as

∃v, x. c(q0, ε, v, ε, x) ∧ strBα(v) ∧ strB(x)

Essentially it is saying that the configuration (q0, ε,Bα, emptystr,B), which is the initial configuration on
input α, is reached in the computation (which is the predicate c).

In order to describe the formula ϕcomp, we to capture the effect of changes to the tape and head movement.
To do this easily we need another helper formula. Recall that in our representation of our configuration, a
pair of strings (u, v) represent a tape that holds uRvtω with the head reading the leftmost symbol of v. We
will define a formula movea,b,d(u1, v1, u2, v2) with free variables u1, v1, u2, v2 that captures the fact that in
“tape (u1, v1) symbol a is read, and the effect of writing b and moving the head in direction d is the tape
(u2, v2)”. There one technical issue we need to deal with. Observe that, in a tape (u, v), we are reading t
when either v is a string that begins with t or when v = ε. To handle this uniformly, let us introduce a new
predicate hda(x, y) defined as

hda(x, y) =

{
a(x, y) if a 6= t
a(x, y) ∨ (x = ε ∧ y = ε) if a = t

Let us first define moving right. If we move right when we read a and write b, we go from tape (u, av) to
(bu, v); we encode this in our logic.

movea,b,+1(u1, v1, u2, v2) = hda(v2, v1) ∧ b(u1, u2).

Notice the use of b as opposed to hdb because after the step u2 will be a string starting with b, even if b is
t. Let us now consider moving left. Moving left when reading a and writing b, from tape (cu, v) we get the
tape (u, cbv).

movea,b,−1(u1, v1, u2, v2) = ∃x∃y
∨

e∈{0,1,t,B}

(e(u2, u1) ∧ hda(x, v1) ∧ hdb(x, y) ∧ e(y, v2))

Notice again the use of e() and the use of hda() and hdb(). Our assumption on Turing machines is that you
never move left of the leftmost cell because of the left endmarker; therefore u1 cannot be ε when a move left
step is executed. Next, it is possible that v1 = ε and the symbol b being written is t and therefore v2 is just
the string e.

On the input tape, we never write anything and its moves can be described as if we read and write the
same symbol, using move. We can define ϕcomp as follows.

ϕcomp = ∀u1∀v1∀w1∀x1∀u2∀v2∀w2∀x2

∧
(p,i,a,q,b,d1,d2):δ(p,i,a)=(q,d1,b,d2)

((c(p, u1, v1, w1, x1) ∧movei,i,d1(u1, v1, u2, v2) ∧movea,b,d2(w1, x1, w2, x2))→ c(q, u2, v2, w2, x2))

ϕcomp effectively says that if (p, u1, v1, w1, x1) is reached and a transition is enabled such that (p, u1, v1, w1, x1) 7−→
(q, u2, v2, w2, x2) then (q, u2, v2, w2, x2) is also reached.

Finally, we need to describe ϕacc which says that an accepting configuration is reached. This is simply

ϕacc = ∃u∃v∃w∃x. c(qacc, u, v, w, x).

Clearly the sentence F (α) can be computed by a Turing machine. To complete the proof we need to
argue that F (α) is valid iff α is accepted by U . Let us assume that F (α) is valid. That means F (α) holds
in all structures. We will construct a specific structure in which the fact that F (α) holds implies that U has
an accepting computation on α. Consider the structure Comp defined as follows.

9

• The universe will be the set of all strings over Γ.

• ε will be interpreted as the empty string.

• Each q will interpreted by some unique element of the universe.

• a(x, y) will hold if the string y = ax for any a ∈ Γ.

• c(q, u, v, w, x) will hold if the computation of U on input α reaches configuration (q, u, v, w, x) at some
point.

Now in the structure Comp, since the initial configuration (q0, ε,Bα, ε,B) is reachable, c(q0, ε,Bα, ε,B) holds
and therefore so does ϕinit. Next, our interpretation of the predicate c in Comp ensures that ϕcomp holds.
Since Comp |= F (α), it must be that Comp |= ϕacc. That means for some strings u, v, w, x, the predicate
c(qacc, u, v, w, x) holds in Comp. But that means (qacc, u, v, w, x) is reached in the computation of U on α.
In other words, α is accepted by U .

Let us now prove the converse. Suppose U accepts α. Let

(q0, ε,Bα, ε,B) 7−→ · · · 7−→ (qi, ui, vi, wi, xi) 7−→ · · · 7−→ (qn, un, vn, wn, xn)

be the accepting computation of U on α, where qn = qacc. We need to show that F (α) is valid, i.e., holds in
every τ -structure. Consider an arbitrary τ -structure A. If A 6|= ϕinit ∧ ϕcomp then A |= F (α). Therefore, the
interesting case is when A |= ϕinit ∧ ϕcomp. This case we will show (by induction) that if variables u, v, w, x
“represent” the strings ui, vi, wi, xi, respectively, then c(qi, u, v, w, x) holds. That is

(strui
(u) ∧ strvi(v) ∧ strwi

(w) ∧ strxi
(x))→ c(qi, u, v, w, x)

holds in the structure A. If we establish this result, then it follows that ϕacc holds.
The base case of the induction holds, because A satisfies ϕinit. For the induction step, let us assume that

the result holds for i. Consider any pair configurations (q′1, u
′
1, v
′
1, w

′
1, x
′
1) 7−→ (q′2, u

′
2, v
′
2, w

′
2, x
′
2) according

to transition δ(q′1, i, a) = (q′2, d1, b, d2). Then one can prove that

(stru′
1
(u) ∧ strv′1(v) ∧ strw′

1
(w) ∧ strx′

1
(x) ∧ stru′

2
(u′) ∧ strv′2(v′) ∧ strw′

2
(w′) ∧ strx′

2
(x′))

→ (movei,i,d1(u, v, u′, v′) ∧movea,b,d2(w, x,w′, x′))

The induction step then follows from the fact that ϕcomp holds.

10

