Announcements

- Project team and abstract due Oct 8, IN CLASS.
- MP2 is due Oct 1.
- MP3 will be out on Oct 6.
- Reading: Chapter 6 by Mather

4D Minecraft

- Ultimate exploration: to a new dimension!
- Build your own 4D living room with 4D blocks. Start simple see if you are comfortable inside of the 6 walls, then add on furniture:)
- Contacts: lead student: Julius Chuang <jbchuan2@illinois.edu>, prof.
 Francis Wang

Global Stock Market Data Visualization

- Meet with Jeff Ludwig, the director of Jump Labs.
- Learn the needs of the cutting edge trading company and bring visualization models to the next (VR) level.

VR Robots Dancing Together

- Consider a set of robots/platforms that have a wildly different number of appendages/actuators and other physical characteristics how would they dance together? How would they complete similar tasks?
- Make seemingly different creatures dance together using the freedom produced by virtual reality.
- Contacts: prof. Amy Laviers <alaviers@illinois.edu> Robotics,
 Automation, and Dance (RAD) Lab, Mech. Eng. Department, UIUC

https://www.youtub e.com/watch?v=op okUHsDXqI

Study Human Behavior Through Playing Minecraft

- Learn human behavior through a fun game.
- •Develop a plugin that will enable scientists in psychology to monitor player behavior in an online game.
- Collect variable, such as in-game location and reaction time to events, and learn how to vary parameters of the game to control these variables.
- Contact: Cybelle Smith <cmsmit13@illinois.edu> (PhD student in psycholinguistics).

The Caves of Dunhuang

- Preserve one of the wonders of the world, the ancient World Heritage Site from the 4 AD, through VR, augmented with narrative by one of the leading historian on Buddhism and Chinese Arts History.
- Contacts: closed

Refraction, Diffraction, Reflection and Absorption

Refraction in a Prism

Simple (Spherical) Lens

The Lensmaker's Equation: Converging Lens

The Lensmaker's Equation: Diverging Lens

Convenient Unit: Diopter

Structure of the Human Eye

Optical Power the Human Eye

Imaging Properties of a Lens

Imaging Properties of a Lens

