Announcements

- Project team and abstract due Oct 8, IN CLASS.
- MP2 is due tonight 11:59pm.
- MP3 will be out on Oct 6.
- Reading: Chapter 6 by Mather
- If you sent me an email about joining JumpLabs project, I need to see you ALL after class.

Virtual Reality Aided Design for CubeSats

Contact: Vishwa Shah shah84@illinois.edu

Imaging Properties of a Lens

How far should a point be from the lens to produce parallel rays?

Imaging Properties of a Lens

Object is at distance _____ f, its "real image" is in focus at distance _____ f

Formula:

Sanity check:

Imaging Properties of a Lens

Object is at distance _____ f, its "real image" is _____ focus at distance _____ f

The "virtual image" is formed at distance ______.

Formula:

Structure of the Human Eye

The diopter of the human eye is about _____

Eye lens is not _____ Retina (and retinal image) is not _____

Ciliary muscle has the ability_____

Optic nerve forms

The eye muscle is						
Object is at		Rays are				
The rays	get converged	retina. The image is				

The eye muscle is						
Object is at		Rays are				
The rays	get converged	retina. The image is				

Imagine Properties of the Human Eye

How far can an object be so you can focus on it?

How far should a point be from the eye to produce parallel rays?

$$X = 20 - 30cm$$

$$X = 10 - 20cm$$

$$X = 5 - 10cm$$

$$X = X < 5cm$$

The eye muscle is					
Object is at		_ Rays are			
The rays	get converged	retina. The image is			

Vision Defects of a Human Eye

The eye muscle	S		
Object is at		Rays are	
The rays	get converged	retina. The image is	

Object is at _____ Rays are ____

The rays ____ get converged ____ retina

Lens Aberrations

Fisheye lens

Extreme wide-angle lenses of 6-8mm are known as fisheyes. They record a circular image of at least 180', with some lenses even looking behind the camera with a 220' angle of view. The resulting image is very distorted, with vertical and horizontal lines bowed.

Wide-angle lens

Wide-angle lenses of 18–35mm have more general applications than fisheye lenses. Angles of view are generous and depth of field at all apertures is extensive. Poorquality wide-angle lenses may sometimes show some distortion toward the edges of the image.

Standard lens

A standard 50mm lens is fitted on most 35mm SLRs. Useful for most types of subject, it often has a wide maximum aperture, making it good in low light. It does not show the same distortion as a wide or long lens, and its angle of view is similar to that of the human eye.

Long-focus lens

Angles of view of longfocus lenses of 80-400mm start to diminish rapidly. With so little of the scene filling the frame, the subject is shown very large, making a long lens ideal for distant subjects or detailed close-ups. Depth of field decreases as the lens gets longer.

Extreme long-focus lens

Focal lengths above
400mm are specialized
and are not usually found
on standard zooms. The
use of a tripod to support
the lens is essential
because of its relatively
heavy weight. A long
lens has a shallow depth
of field and a small
maximum aperture.

Spherical Aberrations

Optical Distortion

Astigmatism

Coma

Chromatic Aberration

https://www.youtube.com/watch?t=6&v=-bcRYQKY4jc