Announcements

• MP4 is out. Due on Nov 6 @ 11:59pm.

Final project upcoming deadlines:

- Oct 27, submit two .jpg files as the answer to my piazza post:
 - 1. Image for abstract/title. These will be posted on the class webpage: https://courses.engr.illinois.edu/cs498sl/gallery.php
 - 2. Snapshot of your first scene for the final project in Unity

Nov 3, a short video of your progress.

Depth Perception: Depth Cues

Monocular
 Retinal image size
Height in visual field Toyture are dient
 Texture gradient
• Image blur
 Atmospheric perspective
 Accommodation
 Motion parallax
 Shadows/ shading
 Interposition

Binocular

- Vergence angle
- Binocular disparity
- Diplopia

Combination of depth cues:

- Decision theory; machine learning
- Bayesian/probabilistic

Scale Perception (vs. Depth Perception)

How large the object that I see is?

You perception of scale and depth are affected by your IPD (inter pupillary distance) in the virtual world.

https://www.youtube.com/watch?v=HEBEQhwG-rU

Developer Advice

• Design your world in meters.

Do not place objects closer than 1 meter away.

Match IPD in _____ and ____ to your physical IPD.

Motion Perception: Purposes

Purposes:

- 1) Segmentation/Segregation via quick eye fixation on moving objects.
- 2) Extract 3D structure of an object (spin chair around).
- 3) Visual guidance for action:
 - manipulation grab a cup
 - hand-eye coordination
 - self motion information.

Neural Circuitry for Motion

Neural Circuitry for Motion

Lecture 4 Visual Perception of Motion 2015

https://www.youtube.com/watch?v=PhWUf9D52RQ

Fundamental Principles: Occlusions and Shutter

http://www.michaelbach.de/ot/mot-motionBinding/index.html http://www.michaelbach.de/ot/mot-breathingSquare/index.html

http://www.michaelbach.de/ot/mot-Ternus/index.html

Object Motion vs Observer Motion

Object moves:

Eye moves:

Suppressed eye motion:

Motion Detection Circuitry

The brain uses more information to distinguish self motion from object motion:

- 1) Saccadic masking/suppression suppresses motion detectors
- 2) Eye movement commands (efference copies) (but also vestibular input, other efference copies from muscles and skin throughout the body).
- 3) Large scale motions if eye moves the whole scene must move

•

Motion Detection Circuitry

Optical Flow

- 1) Crucial for understanding simulation sickness (not motion sickness)
- 2) Tracking movement of features on retina
- 3) A vector field (or velocities field) on the retina (image plane, sphere)

Optical Flow vs Self Motion

Big Problem in VR