

CS 498: Virtual Reality
MP 1: Unity basics
MP1.1 due: September 12th, 2018 @ 11:59 PM
MP1.2 due: September 19th, 2018 @ 11:59 PM

In this assignment, you will gain experience in basic Unity3D development, and get to experience some
VR demos.
Important Notes:

1. Read all submission instructions carefully​, and submit all required
documents. If you are missing some files (in either submission), but
we can still grade, you will be docked 40 points (out of 200). If we are
unable to grade due to missing documents, you will get a 0.

2. Oculus demos need a TA to be present in order to install them.
Steam/Student demos do not.

3. Google​, the ​Unity Documentation​, the ​Unity Wiki​, and the ​Unity
Forums​ are excellent sources of information, especially as you start
to use more advanced features of Unity.

4. To earn extra credit, you must submit with a partner. Use the Piazza
teammate search function to help find one, or just chat up your
neighbors in lecture.

5. Check Piazza for any bugs, updates, or important information for this
MP.

6. Save the project on your EWS drive (usually the U: drive). The U: drive
is available across all of the computers in the lab. If you save to the C:
drive, your project will only exist on that single computer.

MP1.1: Due September 12
Create a new Unity project named ​CS498MP1_1

Create a new project by clicking through the prompts when you click the NEW button on the top right.
Fill in the appropriate details to your heart’s content.

1

http://lmgtfy.com/?q=google
https://docs.unity3d.com/Manual/index.html
https://wiki.unity3d.com/index.php/Main_Page
https://forum.unity.com/
https://forum.unity.com/

Next, read through the following Unity Tutorial, to familiarize yourself with the very basics of the Unity
interface-
Basic Interface Tutorial
More In Depth Interface Tutorial
Feel free to look through some more tutorials, to familiarize yourself with the basics of Unity.

1.1.1

The Room:​ Oh hai Mark!

You will build a cubic room, whose sides are made out of six planes. Make sure to orient these
planes so the visible sides face inwards, and ensure that the player cannot walk through any of them.
The room should be 15x15x15 Unity units (aka meters).

First, create a plane. It can be found in the top bar menus, under GameObject → 3D Object- >
Plane, as shown below.

Now, by default the plane is 10x10 (X x Z) units. In order to make your room 15 units wide, you

have to scale the plane. On the right side (in the default editor layout) you will find the Inspector
window. This window provides details about the currently selected object. Select the plane in the Scene
view, and the Inspector will fill with information and settings for said plane. Find the “Scale” option, and
set it to 1.5 on the X and Z to make your plane 15 units wide and long.

2

https://docs.unity3d.com/Manual/LearningtheInterface.html
https://docs.unity3d.com/Manual/UsingTheEditor.html

Note: The plane has no thickness, so the value in Y can be any positive integer.

By default, your scene has a directional light in it. This is basically the sun- a light source that
illuminates your entire scene from a specified angle, from very far away. You’ll notice that your planes
do not block this light. That’s because planes only block light (and render) from one side. Bear this in
mind when creating objects in Unity in the future! Please delete the directional light (don’t worry, youll
add new lights in later)

In the hierarchy view, you can select your plane, and duplicate it.

From there, simply change the new plane’s rotation and position to make it one of the walls or ceilings.
Unity measures position from the center of the object, so if you want your walls to match up with the
floor (at height 0), your walls will need to be at 7.5

3

Note: In the image above, rotating the plane also rotated its axes (the blue z axis now points down). Make sure
to account for that when rotating and moving objects!

Player:

Place an OVR Player Controller prefab in the room. This prefab handles basic movement,
collision, and camera control.

The lab computers come with the Oculus OVR plugin installed. You can import it by going to
Assets→Import Package→OculusUtilites, and then click import.

 If, for whatever reason, you can’t find it, go
to the ​Oculus Website​ and download their
Unity package. Unzip the unity package file,
and then go to Assets→Import
Package→Custom Package. Find the
unzipped OculusUntilites.unitypackage, and
import all of the items within. You should now
have an “OVR” folder in your “Assets” folder.

In this class, you will be primarily using two
prefab objects from this package (both found
in OVR→Prefabs). The first prefab, the
OVRCameraRig, is a camera for the Oculus,
that handles all of the movement and position
tracking for the oculus, as well as the
rendering on the Oculus display. The second
prefab, the OVRPlayerController, is a more
complicated version of the OVRCameraRig. It

4

https://developer.oculus.com/downloads/package/oculus-utilities-for-unity-5/

includes the camera from the OVRCameraRig, but also includes basic joystick movement controls, and
a capsule-shaped collider (so that the player doesn’t walk through solid objects). Place an
OVRPlayerController into your scene, at (0,1,0), and delete the “main camera” object.

There’s just one more thing you need to do to finish enabling VR. Go to Edit→Project
Settings→Player, which will open up the player settings in the inspector window. In “Other Settings” (or
XR settings, depending on your version of Unity), check the “virtual reality supported” option. Now,
when you play your scene, it should render inside the Oculus.

If you have issues importing, please check piazza to see if others have had your issue, and
make a post if you need more information.

Lighting:

At the center of the roof of the room, place a point source of light. This light will change color by
pressing the Tab key, which is detailed in the scripting section.

First, read up on the ​types of light in Unity​. Then, go to GameObject→Light→Point Light, and
bring a point light into your scene. Place it at (0,15,0)

Select your light, and your inspector view should have a “Light” component like this-

Of primary importance are the “range” (the radius of your light), color, and intensity values. Set

the shadow type to “soft shadows”, and read up on ​Unity Shadows​. Set the “Mode” to “Realtime”, and
read up on ​Lighting Modes In Unity​ Set your range and intensity so that your room is brightly lit.

5

https://docs.unity3d.com/Manual/Lighting.html
https://docs.unity3d.com/Manual/Shadows.html
https://docs.unity3d.com/Manual/LightModes.html

Planet and Moon:
Create a large sphere, and have it float in the middle of the room. Create another, smaller

sphere, set it as a child object of the bigger sphere, and move it next to the bigger sphere, 4 units away
on the X-axis. You will make it orbit the larger sphere in the Scripting section.

Create two spheres (GameObject→3D→Sphere). Scale the first sphere to 2 in all directions,
and place it in the center of your room. In the Hierarchy view, drag the second sphere onto the first.
They should now look like this-

What this means is that the second sphere is a child of the first sphere. So now, whenever you

change the position, rotation, or size of the parent sphere, its child will make the same movement,
rotation, or scaling. Furthermore, the 0,0,0 position of the child is now its parent’s position, NOT the
global 0,0,0. That is, the child’s position is an offset from the parent’s position. Finally, if the parent
rotates, then the child will rotate about its parent’s axes, not its own axes (this will make more sense
later). For more information on parent-child relationships, see the ​Hierarchy​ page of the Unity Manual.
Set the position of the child sphere to be (2,0,0), which is four units from the parent sphere on the
X-axis (why?).

Text:

Put large text on a wall, detailing the controls and listing your netIDs. Feel free to experiment
with what you can put on a canvas, but keep it grandmother appropriate!

Check out the Unity tutorial on ​Creating Worldspace UIs​. Create a text canvas by going to
GameObject→UI→Text. This will create a Unity Canvas, and some text on that canvas as a child of the
canvas. It may also happen to be massive. Not what we want.

6

https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/HOWTO-UIWorldSpace.html

To remedy this, select the canvas

(not the text) from the hierarchy view. It’s
inspector should look like this - ​(right)

The first thing to do is change the
Render mode from “Screen Space -
Overlay”, to “World Space”. This changes
our canvas from a UI element that is
glued to the camera, to an object that is
stationary in the world. Traditional UIs do
not work well in VR, and we highly, highly
advise against sticking any UI elements to
the camera in your future MPs and
Projects. Always attach UI elements to
something in the world (See ​this​).

Now that the canvas is a world
space object, we can make it a more
reasonable size. However, since the Rect
Transform’s width and height determine
the resolution of our text canvas, we
cannot set them to be, say, 5x5, because then our text resolution would be 5 pixels by 5 pixels. Set the
width and height to 1000 (that is 1000x1000 pixels). Shrink the canvas by setting the scale. We want
our canvas to be 10 units by 10 units, and be 1000x1000 pixels, so our scaling is 10/1000 = 0.01. Make
sure your text’s Rect Transform has the same width and height as its parent canvas, but leave the
scale as 1. Place your canvas against one of the walls. You want to place your text ever so slightly
(like, 0.001) in front of the wall it is against to avoid Z-fighting (which is where two objects have the
same depth, and Unity can’t figure out which one to render). Below is an example of Z-fighting-

7

https://developer.oculus.com/design/latest/concepts/bp-vision/

Now, you can set your text color, size, font, width, whether it wraps or overflows, etc. Make your
text have you and your partner’s NetIDs, as well as the controls for your game. Make sure it is big
enough for us to read. If the text appears blurry or jagged, then increase the width and height of the
canvas and text (to increase the resolution), and scale them down further.

Scripting:
You will need to write a couple of scripts for this part of the MP. Read up on ​Scripts​ in Unity, and
familiarize yourself with C# syntax. It should be very familiar to any of you who have worked with Java.
If you are unfamiliar with programming, you can check out this ​C# tutorial​. You’ll only need the basics of
objects, classes, and variables for now. Throughout this course, you will find the ​Script API Reference ​a
useful source of information.

1. Light switch:​ Pressing the Tab key should change the color of the point light in the room.
Pressing it repeatedly should change the color each time, i.e. have it be a toggle or a switch
between a series of colors. Make sure that the color change is large enough so it is immediately
apparent!

Create a new script, called “Lightswitch”, and attach it to your point light. You can attach a script

by selecting the light, then dragging the script from the “assets” tab to the inspector tab on the right.
When a Unity Script is attached to a GameObject, that script will run when the game is started.
Furthermore, the “​this”​ reference in the script will refer to the object that the script is attached to.

Our first step is to get the light component of our point light GameObject. Read the ​Controlling
GameObjects using GetComponent​ tutorial, then add these lines to your script-

This will get the light component of the object this script is attached to (calling

“​GetComponent<>()​” is the same as calling “​this.GetComponent<>()​”), and set it to the “​light​” variable
when we boot up the game. To register input, we use the ​Input​ library of Unity, specifically, the
Input.GetKeyDown​ method. This will return true when the specified key is first pressed down. Since we
want to listen for the “tab” key, then in our “​Update​” function, we write-

Setting the light color is easy, you can either create a new color using the “​new

Color(red,green,blue)​” constructor, or one of the predefined colors. How you change the light is up to
you, but the light should visibly change every time we press tab. Maybe you use a boolean variable to
track the current color, or an integer (for more than two colors). That is up to you.

2. Orbit: ​The moon should orbit the planet sphere. The easiest way to do this is to have the planet

constantly rotate. Since the moon is a child of the planet, it will also rotate around the planet.

8

https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://www.tutorialspoint.com/csharp/
https://docs.unity3d.com/ScriptReference/
https://docs.unity3d.com/Manual/ControllingGameObjectsComponents.html
https://docs.unity3d.com/Manual/ControllingGameObjectsComponents.html
https://docs.unity3d.com/ScriptReference/Input.html

GameObjects’ rotation and position is controlled by their ​transform​ parameter, accessed with

“<​GameObjectName>.transform​”. This class is well worth looking through, though the most important
parts for this class are the “​transform.position​”, which is the 3 vector of the object’s x,y, and z
coordinates in the global frame (as opposed to the local frame, which is relative to this object’s parent’s
position), and the “​Rotate​” method.

Most of Unity rotations are done using something called quaternions, which are better than the
standard way of measuring rotation (the rotation about the x,y,and z axis). You will learn about
quaternions, and why they are awesome, in class later. For now, simply know that the
transform.Rotate(Vector3(a,b,c))​ will rotate you “a” degrees about the object’s x axis, “b” degrees
about the y, and “c” degrees about the z.

Create a script, called “orbit”, and attach it to the parent sphere. In its update method, add this
line-

This will rotate the parent sphere by 2 degrees about the y axis every frame.

3. Room switch:​ Pressing the ‘2’ key should switch to Part 2!

Create the “room switch” script, and attach it to the player. Simply use ​Input.GetKeyDown(“2”)​,

and set the player’s ​transform.position​ to the Vector3 corresponding to the center of your room for
MP 1.1.2 (wherever you end up putting it). Don’t forget, the player controller needs to be 1 unit above
the ground.

4. Quit key: ​Pressing ‘Esc’ should exit the game.

This can be simply added on to the “room switch” script. You will want to add the following lines

to the update method-

Application.Quit()​ quits a Unity application, but it will not stop a game running in editor. So,

we check if we are in editor, and stop the editor if we are.

9

https://docs.unity3d.com/ScriptReference/Transform.html

1.1.2
In 1.1.2, you will be working in the same scene as 1.1.1, ​but with fewer
instructions.
You are expected to ​Google​ the specifics -- ​Unity has a great tutorial on practically everything​ you will
need to do for this MP, and the ​Unity forums​ also provide high-quality answers for debugging advice.

The Room 2: ​Hi doggy!
Create a new room, at least 50 units away from the first room. Inside the MP1 zip file, we’ve provided
you with a package of a wall that contains a door. Your new room will use this object as one of the
walls. The floor plan of the room will be a hexagon (meaning there will be six walls), and the ceiling will
be slanted (not parallel to the floor). It is ok if the walls pass through each other (or through the floor),
provided the final room is fully enclosed, and looks good from the inside. Use Unity cubes this time, so
that the directional light is blocked. You can make the cubes very thin, so that they are like the planes
you used before (except, of course, being solid on all sides). Add a point light in your room, as we will
need to clearly see all of the features of the room.
To import the package, unzip the MP1 zip folder,then go to “Assets→Import package→Custom
package”, navigate to your unzipped MP1 folder, and import the .unitypackage file.
Note- The door object does not currently have a collider, so you can walk right through it. You can add
a collider by clicking “add component” in the inspector window, then going to physics-> box collider (or
mesh collider).

Material:

Read up on ​Materials, Shaders and Textures​, focusing mainly on the Materials, for now. We
have provided you with an image (tile.png), and a normal map (it’s the weird purplish image
tile-normal.png). Create a material with these images, and put it on one wall. Change the tiling, and put
it on 2 different walls. Finally, change the metallicity, and put it on the remaining 2 walls. Make a simple
colored material for the ceiling and floor, and apply it. Make sure each face is distinct enough that it is
clearly visible to the grader. If that means you have to make the room look a little bit ridiculous, then go
for it.

To create a material, go to Assets→Create→Material.

10

http://lmgtfy.com/?q=google
https://unity3d.com/learn/tutorials
https://forum.unity.com/
https://docs.unity3d.com/Manual/Shaders.html

This will generate a default material. Name it
“Wall 1”. Select it, and you should see the following menu
- ​(right)

Drag the “​tile.png​” image to the box labelled
“Albedo”. Now, drag this material from the assets folder
onto one of your walls (except the wall with the door) in
the “scene” view. It probably doesn’t look too good. Don’t
worry, it’ll get better.

Drag the “​tile-normal.png​” image to the box
labelled “normal map”. Notice how it changes the
perceived material of of the material. A normal map is a
trick used to give the illusion of depth on a flat surface, by
telling the engine to reflect light as if there were these
little bumps and pits in the material.

Create a new material, called “Wall 2”, and apply
the albedo and normal maps the same as wall 1. Apply it
to another two walls (again, except the wall with the
door). Right above the “secondary maps” subheading is
the “tiling” option, which has an option for x and for y.
Tiling causes a material to repeat itself on the same
object, rather than covering the whole thing. So, changing
tiling X to 2, means that the material will repeat once (that
is, show up twice) in the x direction on the wall. Play with
the tiling until you like the look of it. Below is an example
of non tiled and tiled walls side by side-

11

Create a new material, called “Wall 3” with the same albedo and normal map. Change its tiling
to be different from walls 1 and 2. Right below the albedo option is a slider for metallic, and a slider for
smoothness. Play around with these, and see how they affect the material. Both deal with how light
reflects off the material, metallic giving a more metallic look, and smoothness helping to enhance or
subdue the normal map. Paste this material on the remaining two walls.

Finally, create a material, called “floor”, that has no albedo or normal map. Next to the albedo
option is a small color box. This shows what color the material will reflect. When the material has no
albedo, the material will be this flat reflection color. Try and see what happens when you change the
color of a material with an albedo. Apply this flat color onto the floor and ceiling of your room.

Scripting:
You will be creating some scripts for this room as well.

1. Room Switch: ​Extend your room switch script so that pressing 1 moves you back to 1.1.1.

This is essentially the same as the movement script from MP 1.1.1. Extend the same “room

switch” script again, and make it return you to the center of your first room.

2. Trigger Zone: ​Create a box collider, and make it a trigger. Place a sphere above the trigger
zone. Make a script so that when the player enters the trigger zone, the ball falls.

To create the Trigger Zone script, first, watch the Unity Tutorials on ​Colliders​ and ​Triggers​. Next,

create a new empty GameObject. Next, hit Add Component→Physics→Box Collider. A Box Collider is
(as the name would suggest) a box-shaped area that registers and reacts with collisions with other
GameObjects. Make the box collider 2 x 0.5 x 2 (x,y,z) units. Select the “is trigger” option. Your object
should look like this-

And should show up in the scene view as a green wireframe box. Place this game object in the back of
your hexagonal room, across from the door, and create a sphere about 3-4 units directly above the
center of the trigger GameObject.

Add a script to your trigger object by clicking Add Component→New Script, and name it
“BallDropScript”. Open the script, and create the following lines-

12

https://unity3d.com/learn/tutorials/topics/physics/colliders
https://unity3d.com/learn/tutorials/topics/physics/colliders-triggers

The OnTriggerEnter function will be called when the collider attached to our empty GameObject
is entered. The “other” parameter is the collider that intersected this collider.

The “public GameObject” tag shows a neat feature of unity. Save your script, then navigate to
your empty trigger GameObject. The script component should look like this-

So our public GameObject is now a field for the script component in Unity. Drag the sphere into

this field. Now, whenever you reference the “ball” variable in your script, it will be referencing the sphere
you dragged in. Pretty neat! You can read more about this in the ​Variables and the Inspector tutorial​.

Now, all that’s left is to make that sphere fall. You’ll need to get the rigid body of the sphere
(rigid bodies deal with physics, read more ​here​), using the ​ball.GetComponent<RigidBody>()​ method.
After that, simply set ​rigidBody.useGravity​ to ​true​.

Store assets:
Import at least one free asset from the ​Unity Store​. Place it in the room. You will need a free Unity
account for this.

Create a Unity account​, then head over to the “Asset Store” tab, right next to the “Scene” and “Game”
tabs-

Sign into your Unity account using the “log in” button at the upper right. Now, you can search for any
free asset you desire, and put it in your room. Make sure it doesn’t intersect with your collider, or it will
trigger the collider. It can be whatever you want (provided it’s school-appropriate, of course).

Submit:
Submit your unity project ​according to the submission guidelines ​at the bottom of this
assignment.

13

https://docs.unity3d.com/Manual/VariablesAndTheInspector.html
https://docs.unity3d.com/Manual/RigidbodiesOverview.html
https://www.assetstore.unity3d.com/
https://id.unity.com/account/new

MP1.2:
Create a new Unity project, called ​CS498MP1_2​. ​Do not work in your MP 1.1 project.
In this part, you will create a simple game with minimal hand-holding, as compared to MP 1.1.

1.2.1

The Room 3: ​You’re tearing me apart, Lisa!
Create a more interesting room, with a window! The shape and size is all up to you, it should be large
enough to comfortably accommodate all of the following requirements within it. The walls should be
colored or textured, as well. The choice of wall color and texture is up to you (but keep it grandmother
appropriate).

For 20 points of extra credit, use a 3D modelling tool to create more complicated room geometry, like a
curved roof, slanted windows, multiple levels, et cetera. Note in a README what you created. Some
software options are-
Blender (​https://www.blender.org/​): Extremely powerful, but complicated
Google Sketchup (​https://www.sketchup.com/​)- Simple, but somewhat limited
Probuilder (​https://assetstore.unity.com/packages/tools/modeling/probuilder-111418​)- Most limited of
the three, but is integrated directly into Unity.

The default Unity modelling tools are extremely limited, so we highly recommend you familiarize
yourself with one of the above tools. It will assist greatly in your final project. To get the extra credit, you
must do a nontrivial amount of extra work with your modelling tool. That is, it should look like it took you
more than 15 minutes to do.

Skybox:
We have provided you with six images in ​skybox.zip​ that together, form a skybox. You are going to
create a skybox with these images, and apply it to your scene. ​Here is the Unity manual page for
skyboxes.​ Skybox asset credit: ​mgsvevo

14

https://www.blender.org/
https://www.sketchup.com/
https://assetstore.unity.com/packages/tools/modeling/probuilder-111418
https://docs.unity3d.com/Manual/HOWTO-UseSkybox.html
https://docs.unity3d.com/Manual/HOWTO-UseSkybox.html
https://www.assetstore.unity3d.com/en/#!/search/page=1/sortby=popularity/query=publisher:9104

Directional Light:
Create a directional light for the scene, set it to have hard shadows. Set its angle to match the sun in
the skybox.

Scripting: Trigger game:

You are going to make a game similar to a cat chasing a laser pointer (where you’re the cat). In
this room, you are going to place several box colliders (at least 4), and mark them as triggers. Place a
point light at the center of each box collider. Every 3 seconds, one of these point lights should light up.
The player should then move to the lit up point light, and press “A” on the controller (the ​OnTriggerStay
method should be helpful here). When the player does so, they will get one point, and another light
should light up ​at random​ (bypassing the normal 3 second timer). The player’s score should be
displayed on the wall, in sharp (NOT blurry) text. We should be able to quit at any time upon pressing
the Start button on the controller.

Using a controller in Unity is not quite as simple as using the keyboard. Unfortunately, because
you can’t see the keyboard in VR, and all of the keys largely feel the same, keyboards do not work well
in VR. Controllers, with their contours and designated button shapes, are much easier to use blind.
Unity Manual page on Input
Unity wiki page on Xbox controllers
Additionally, a Microsoft Blog page on Xbox controller input in Unity​ (note: the controller drivers are
already installed)
Unity Manual page on Time and Frame Management

A very useful method here is Unity’s ​Time.DeltaTime()​ method. This method, when called from
the update method, will tell you how many real-time seconds have elapsed since the last frame. This is
hugely important, as you do not want to tie game logic to your framerate.

1.2.2
VR experiences: ​Your final task is to choose and try out four (4) of the VR demos available through the
Oculus or Steam store, or from the VR shared “V” drive. You will have to create a Steam and/or Oculus
account for this step. Oculus titles will need a TA to help install, while steam will not. For each demo,
write at least 3 sentences with a short description of the demo, something you liked, and something you
did not like. One experience must be a student experience, and one must be an Oculus/Steam
experience. You can find oculus games at ​https://share.oculus.com/​ or on Steam at
http://store.steampowered.com/search/?vrsupport=102​. Please put your names, netIDs, and reviews in
a PDF named ​HW1DemoWriteUp.pdf​. Some TAs have access to some paid experiences. See piazza for
a list of these TAs, and the experiences they have access to (hint hint, Nate has ​SUPERHOT VR​).
Attend that TA’s office hours to try the experience.

Submit:
Submit your unity project ​according to the submission guidelines ​at the bottom of this
assignment.

15

https://docs.unity3d.com/ScriptReference/Collider.OnTriggerStay.html
https://docs.unity3d.com/Manual/ConventionalGameInput.html
http://wiki.unity3d.com/index.php?title=Xbox360Controller
https://blogs.msdn.microsoft.com/uk_faculty_connection/2014/12/02/adding-xbox-controller-support-and-input-to-your-unity3d-game/
https://docs.unity3d.com/Manual/TimeFrameManagement.html
https://share.oculus.com/
http://store.steampowered.com/search/?vrsupport=102
http://store.steampowered.com/app/617830/SUPERHOT_VR/

Rubric

MP 1.1
Name Points Description

 1.1.1

Room 5 15x15 room made from 6 planes, with OVRPlayerController

Light 5 Bright point light in center of room ceiling

Planet and moon 10 Planet and rotating moon in center of room

Text 5 Text displays NetIDs and controls

Light Switch 5 Light changes color every time tab key is pressed

Room Switch 5 Pressing “2” moves on to 1.1.2

Quit 5 Pressing “Esc” quits the game

Total 40

1.1.2

Room Switch 5 Pressing “1” moves back to 1.1.1

Room 10 Room is Hexagonal, with slanted roof and prefab door. Roof and
ceiling have flat, colored texture.

Material 1 5 Created material with albedo and normal map, placed on wall

Material 2- tiling 5 2 walls have altered tiling

Material 3-
smoothness/metallicity

5 2 walls have altered smoothness and/or mentallicity

Trigger zone 10 When walking beneath floating ball, it falls to the floor

Total 40

Grand Total 80

16

MP 1.2
Name Points Description

1.2.1

Room 10 Built a room, with a window, and colored/textured walls.

Skybox 10 Custom Skybox in sky

Directional Light 5 Has directional light, which matches skybox

Trigger Zone Lights 5 Has at least 4 trigger zones with lights

Random Trigger Zone 5 Active trigger zone is random

Xbox Controls 25 Can press “A” on controller to get points when in lit trigger zone,
“start” to quit

Score Display 15 Score is tracked and displayed clearly on wall

Trigger Zone Timer 25 Every 3 seconds, active trigger zone changes

Extra Credit 20 Built nontrivial room geometry with blender, sketchup, or
probuilder

Total 100+20

1.2.2

Experience 1 5 Likes and dislikes for an Oculus/Steam experience

Experience 2 5 Likes and dislikes for a student experience

Experience 3 5 Likes and dislikes for any experience

Experience 4 5 Likes and dislikes for any experience

Total 20

Grand Total 120+20

17

Submission Instructions

Step 1: Create a .unitypackage file

1. Save your Unity scene in the Assets folder with the title “​CS498MP1_1​” (for MP 1.1) or
“​CS498MP1_2​” (for MP 1.2)

2. Using the editor, find the created scene in the Project menu
3. Right click on the scene and select “Export Package…”
4. Export the file using default settings (“Include dependencies” should be checked by default)

Step 2: Create a standalone game build

1. Go to Edit → Project Settings→ Player. Make sure the “Virtual Reality Supported” box under
Other Settings or XR Settings is checked.

2. Go to File → Build Settings
3. Click “Add Open Scenes”. This will add the currently open scene to the build. You must have

saved the scene to the Assets folder for this to work (you should do that anyways).
4. Save the project to ​C:\Users\<student’s netid>\<project name> ​temporarily​, rather than your

U drive (local storage is faster when building).
5. Hit “Build”.
6. This should create an executable (​.exe​) for running the build, a folder containing your scene

data, and a UnityPlayer.dll. Make sure this executable runs correctly on the Rift before
submitting.

Step 3: Copy the Input Manager

1. Shut down your project, and navigate to Your_Project_Folder→ProjectSettings
2. Copy the “InputManager.asset” file, and copy it to your submission folder. This will allow us to

replicate any new gamepad buttons or joysticks you mapped.

Step 4: Zip the files and submit them through Compass

1. Create a zip file containing the following items:
a. The ​.unitypackage​ created in Step 1
b. The ​.exe, dll, ​ ​AND DATA FOLDER​ created in Step 2
c. The ​InputManager.asset​ object found in Step 3
d. A ​README.txt​ file containing any special instructions or notes you think are relevant for

evaluating your assignment.
e. For 1.2, your writeup PDF.

2. Name the file by separating NetIDs with underscores- _cs498vr_HW1_part#.zip. EXAMPLE: If
steve1 and anna2 worked together, the file for MP 1.1 should be called
steve1_anna2_cs498vr_HW1_1.zip​, and​ steve1_anna2_cs498vr_HW1_2.zip ​for 1.2

a. Only one partner should submit the zip.

DO NOT SUBMIT YOUR ENTIRE PROJECT FOLDER

18

