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What is MapReduce?
• Terms are borrowed from Functional Language (e.g., Lisp)
Sum of squares:

• (map square ‘(1 2 3 4))
– Output: (1 4 9 16)
[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16))
– (+ 16 (+ 9 (+ 4 1) ) )
– Output: 30
[processes set of all records in batches]

• Let’s consider a sample application: Wordcount
– You are given a huge dataset (e.g., Wikipedia dump or all of Shakespeare’s works) and asked to list the count for each 

of the words in each of the documents therein 2



Map

• Process individual records to generate 
intermediate key/value pairs.

Welcome	Everyone
Hello	Everyone

Welcome 1
Everyone 1	
Hello 1
Everyone 1	

Input <filename, file text>

Key Value
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Map

• Parallelly Process individual records to 
generate intermediate key/value pairs.

Welcome	Everyone
Hello	Everyone

Welcome 1
Everyone 1	
Hello 1
Everyone 1	Input <filename, file text>

MAP TASK 1

MAP TASK 2
4



Map

• Parallelly Process a large number of  
individual records to generate intermediate 
key/value pairs.

Welcome	Everyone

Hello	Everyone

Why	are	you	here	

I	am	also	here

They	are	also	here

Yes,	it’s	THEM!	

The	same	people	we	were	thinking	of

…….

Welcome 1

Everyone 1	

Hello 1

Everyone 1

Why	 1

Are 1

You 1

Here 1

…….Input <filename, file text>

MAP TASKS
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Reduce
• Reduce processes and merges all intermediate 

values associated per key

Welcome 1
Everyone 1	
Hello 1
Everyone 1	

Everyone 2	
Hello 1
Welcome 1

Key Value
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Reduce
• Each key assigned to one Reduce
• Parallelly Processes and merges all intermediate values by partitioning 

keys

• Popular: Hash partitioning, i.e., key is assigned to reduce # = 
hash(key)%number of reduce servers

Welcome 1
Everyone 1	
Hello 1
Everyone 1	

Everyone 2	
Hello 1
Welcome 1

REDUCE 
TASK 1

REDUCE 
TASK 2
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Hadoop Code - Map
public static class MapClass extends MapReduceBase   implements 

Mapper<LongWritable, Text, Text, IntWritable> { 

private final static IntWritable one = 

new IntWritable(1); 

private Text word = new Text();

public void map( LongWritable key, Text value,    /* value is a line */ 
OutputCollector<Text, IntWritable> output, Reporter reporter) 

throws IOException { 

String line = value.toString(); 

StringTokenizer itr = new StringTokenizer(line); 

while (itr.hasMoreTokens()) {    

word.set(itr.nextToken()); 

output.collect(word, one); 

} 

} 

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
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Hadoop Code - Reduce
public static class ReduceClass extends MapReduceBase implements 

Reducer<Text, IntWritable, Text, IntWritable> { 

public void reduce( /* called once per key */

Text key, 

Iterator<IntWritable> values, 

OutputCollector<Text, IntWritable> output, 

Reporter reporter) 

throws IOException { 

int sum = 0; 

while (values.hasNext()) { 

sum += values.next().get(); 

} 

output.collect(key, new IntWritable(sum)); 

} 

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
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Hadoop Code - Driver
// Tells Hadoop how to run your Map-Reduce job

public void run (String inputPath, String outputPath) 

throws Exception { 

// The job. WordCount contains MapClass and Reduce.

JobConf conf = new JobConf(WordCount.class); 

conf.setJobName(”mywordcount"); 

// The keys are words

(strings) conf.setOutputKeyClass(Text.class); 

// The values are counts (ints)

conf.setOutputValueClass(IntWritable.class); 

conf.setMapperClass(MapClass.class); 

conf.setReducerClass(ReduceClass.class); 

FileInputFormat.addInputPath(

conf, newPath(inputPath)); 

FileOutputFormat.setOutputPath(

conf, new Path(outputPath)); 

JobClient.runJob(conf); 

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
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Some Applications of MapReduce
Distributed Grep:
– Input: large set of files
– Output: lines that match pattern

– Map – Emits a line if it matches the supplied pattern
– Reduce – Copies the intermediate data to output
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Some Applications of MapReduce 
(2)

Reverse Web-Link Graph
– Input: Web graph:  tuples (a, b) where (page a à page b)
– Output: For each page, list of pages that link to it

– Map – process web log and for each input <source, target>, it outputs 
<target, source>

– Reduce - emits <target, list(source)>
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Some Applications of MapReduce 
(3)

Count of URL access frequency
– Input: Log of accessed URLs, e.g., from proxy server
– Output: For each URL, % of total accesses for that URL

– Map – Process web log and outputs <URL, 1>
– Multiple Reducers - Emits <URL, URL_count>
(So far, like Wordcount. But still need %)
– Chain another MapReduce job after above one
– Map – Processes <URL, URL_count> and outputs      <1, (<URL, URL_count> )>
– 1 Reducer – Does two passes over input. First sums up URL_count’s to calculate 

overall_count. 
Emits multiple <URL, URL_count/overall_count>
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Some Applications of MapReduce 
(4)

Map task’s output is sorted (e.g., quicksort)
Reduce task’s input is sorted (e.g., mergesort)

Sort
– Input: Series of (key, value) pairs
– Output: Sorted <value>s

– Map – <key, value> à <value, _>  (identity)
– Reducer – <key, value> à <key, value> (identity)
– Partitioning function – partition keys across reducers based on ranges (can’t use 

hashing!)
• Take data distribution into account to balance reducer tasks
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Programming MapReduce
Externally: For user

1. Write a Map program (short), write a Reduce program (short)
2. Specify number of Maps and Reduces (parallelism level)
3. Submit job; wait for result
4. Need to know very little about parallel/distributed programming!

Internally: For the Paradigm and Scheduler
1. Parallelize Map
2. Transfer data from Map to Reduce
3. Parallelize Reduce
4. Implement Storage for Map input, Map output, Reduce input, and Reduce output
(Ensure that no Reduce starts before all Maps are finished. That is, ensure the barrier between the Map 
phase and Reduce phase) 15



Inside MapReduce 
For the cloud:

1. Parallelize Map: easy! each map task is independent of the other!
• All Map output records with same key assigned to same Reduce 

2. Transfer data from Map to Reduce (“Shuffle” phase): 
• All Map output records with same key assigned to same Reduce task 
• use partitioning function, e.g., hash(key)%number of reducers

3. Parallelize Reduce: easy! each reduce task is independent of the other!
4. Implement Storage for Map input, Map output, Reduce input, and Reduce 

output
• Map input: from distributed file system
• Map output: to local disk (at Map node); uses local file system
• Reduce input: from (multiple) remote disks; uses local file systems
• Reduce output: to distributed file system
local file system = Linux FS, etc.
distributed file system = GFS (Google File System), HDFS (Hadoop Distributed 

File System) 16



1
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4
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Blocks
from DFS

Servers

Resource Manager (assigns maps and reduces to servers)

Map tasks

I

II

III

Output  files
into DFS

A

B

C
Servers

A

B

C

(Local write, remote read)

Reduce tasks
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The YARN Scheduler
• Used in Hadoop 2.x +
• YARN = Yet Another Resource Negotiator
• Treats each server as a collection of containers

– Container = fixed CPU + fixed memory
• Has 3 main components

– Global Resource Manager (RM)
• Scheduling

– Per-server Node Manager (NM)
• Daemon and server-specific functions

– Per-application (job) Application Master (AM)
• Container negotiation with RM and NMs
• Detecting task failures of that job

18



YARN: How a job gets a container

Resource	Manager
Capacity	Scheduler

Node	A
Node	Manager	A

Application	
Master	1

Node	B
Node	Manager	B

Application	
Master	2

Task	(App2)

2. Container Completed1. Need 
container 3. Container on Node B

4. Start task, please!

In this figure
• 2 servers (A, B)
• 2 jobs (1, 2)

19



Fault Tolerance
• Server Failure

– NM heartbeats to RM
• If server fails, RM lets all affected AMs know, and AMs take 

action
– NM keeps track of each task running at its server

• If task fails while in-progress, mark the task as idle and restart it

– AM heartbeats to RM
• On failure, RM restarts AM, which then syncs up with its 

running tasks

• RM Failure
– Use old checkpoints and bring up secondary RM

• Heartbeats also used to piggyback container requests
– Avoids extra messages 20



Slow Servers
Slow tasks are called Stragglers

•The slowest task slows the entire job down (why?)
•Due to Bad Disk, Network Bandwidth, CPU, or Memory
•Keep track of “progress” of each task (% done)
•Perform proactive backup (replicated) execution of straggler 
task: task considered done when first replica complete. Called 
Speculative Execution.
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Locality
• Locality

– Since cloud has hierarchical topology (e.g., racks)
– GFS/HDFS stores 3 replicas of each of chunks (e.g., 64 MB in size)

• Maybe on different racks, e.g., 2 on a rack, 1 on a different rack
– Mapreduce attempts to schedule a map task on 

• a machine that contains a replica of corresponding input data, or 
failing that,

• on the same rack as a machine containing the input, or failing that,
• Anywhere

22



Mapreduce: Summary
• Mapreduce uses parallelization + aggregation to 

schedule applications across clusters

• Need to deal with failure

• Plenty of ongoing research work in scheduling and 
fault-tolerance for Mapreduce and Hadoop
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10 Challenges [Above the Clouds]
(Index: Performance Data-related Scalability Logistical)

• Availability of Service: Use Multiple Cloud Providers; Use Elasticity; Prevent DDOS
• Data Lock-In: Standardize APIs; Enable Surge Computing
• Data Confidentiality and Auditability: Deploy Encryption, VLANs, Firewalls, Geographical 

Data Storage
• Data Transfer Bottlenecks: Data Backup/Archival; Higher BW Switches; New Cloud 

Topologies; FedExing Disks
• Performance Unpredictability: QoS; Improved VM Support; Flash Memory; Schedule VMs
• Scalable Storage: Invent Scalable Store
• Bugs in Large Distributed Systems: Invent Debuggers; Real-time debugging; predictable pre-

run-time debugging
• Scaling Quickly: Invent Good Auto-Scalers; Snapshots for Conservation
• Reputation Fate Sharing
• Software Licensing: Pay-for-use licenses; Bulk use sales
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A more Bottom-Up View of Open 
Research Directions

Myriad interesting problems that acknowledge the characteristics that make today’s cloud computing unique: 
massive scale + on-demand + data-intensive + new programmability + and infrastructure- and application-
specific details.

q Monitoring: of systems&applications; single site and multi-site
q Storage: massive scale; global storage; for specific apps or classes
q Failures: what is their effect, what is their frequency, how do we achieve fault-tolerance?
q Scheduling: Moving tasks to data, dealing with federation
q Communication bottleneck: within applications, within a site
q Locality: within clouds, or across them
q Cloud Topologies: non-hierarchical, other hierarchical
q Security: of data, of users, of applications, confidentiality, integrity
q Availability of Data
q Seamless Scalability: of applications, of clouds, of data, of everything
q Geo-distributed clouds: Inter-cloud/multi-cloud computations
q Second Generation of Other Programming Models? Beyond MapReduce! Storm, GraphLab, Hama
q Pricing Models, SLAs, Fairness
q Green cloud computing
q Stream processing



Example: Rapid Atmospheric Modeling System, ColoState U

• Hurricane Georges, 17 days in Sept 1998
– “RAMS modeled the mesoscale convective complex that 

dropped so much rain, in good agreement with recorded data”
– Used 5 km spacing instead of the usual 10 km
– Ran on 256+ processors

• Computation-intenstive computing (or HPC = High 
Performance Computing)

• Can one run such a program without access to a 
supercomputer?
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Distributed Computing Resources
Wisconsin

MIT NCSA

27



An Application Coded by a 
Physicist/Biologist/Meterologist

Job 0

Job 2
Job 1

Job 3

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

Jobs 1 and 2 can be concurrent
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An Application Coded by a 
Physicist/Biologist/Meterologist

Job 2

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

May take several hours/days
4 stages of a job

Init
Stage in
Execute
Stage out
Publish

Computation Intensive, 
so Massively Parallel

Several GBs
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Next: Scheduling Problem
Wisconsin

MIT NCSA

Job 0
Job 2Job 1

Job 3
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2-level Scheduling Infrastructure

31

Job 0
Job 2Job 1

Job 3

Wisconsin

MIT

HTCondor Protocol

NCSA
Globus Protocol

Some other Intra-site Protocol 31



Intra-site Protocol

Job 0

Job 3Wisconsin
HTCondor Protocol

Internal Allocation & Scheduling
Monitoring
Distribution and Publishing of Files
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Condor (now HTCondor)
• High-throughput computing system from U. Wisconsin Madison
• Belongs to a class of Cycle-scavenging systems 
Such systems 
• Run on a lot of workstations
• When workstation is free, ask site’s central server (or Globus) for tasks
• If user hits a keystroke or mouse click, stop task

– Either kill task or ask server to reschedule task
• Can also run on dedicated machines

33



Inter-site Protocol

Job 0

Job 2
Job 1

Job 3Wisconsin

MIT NCSA
Globus Protocol

Internal structure of different
sites may be 

transparent (invisible) to Globus

External Allocation & Scheduling
Stage in & Stage out of Files 34



Globus
• Globus Alliance involves universities, national US research labs, and some 

companies
• Standardized several things, especially software tools
• Separately, but related: Open Grid Forum
• Globus Alliance has developed the Globus Toolkit

http://toolkit.globus.org/toolkit/

35



Globus Toolkit

• Open-source
• Consists of several components

– GridFTP: Wide-area transfer of bulk data
– GRAM5 (Grid Resource Allocation Manager): 

submit, locate, cancel, and manage jobs
• Not a scheduler
• Globus communicates with the schedulers in intra-site 

protocols like HTCondor or Portable Batch System 
(PBS)

– RLS (Replica Location Service): Naming service 
that translates from a file/dir name to a target 
location (or another file/dir name)

– Libraries like XIO to provide a standard API for all 
Grid IO functionalities

– Grid Security Infrastructure (GSI)
36



Security Issues
• Important in Grids because they are federated, i.e., no single entity controls the 

entire infrastructure 

• Single sign-on: collective job set should require once-only user authentication
• Mapping to local security mechanisms: some sites use Kerberos, others using Unix
• Delegation: credentials to access resources inherited by subcomputations, e.g., job 0 

to job 1
• Community authorization: e.g., third-party authentication

• These are also important in clouds, but less so because clouds are typically run 
under a central control

• In clouds the focus is on failures, scale, on-demand nature

37
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• Cloud computing vs. Grid computing: what are 
the differences? 

• What has happened to the Grid Computing 
Community?
– See Open Cloud Consortium
– See CCGrid conference
– See Globus

Points to Ponder



Summary
• Grid computing focuses on computation-intensive 

computing (HPC)
• Though often federated, architecture and key 

concepts have a lot in common with that of clouds
• Are Grids/HPC converging towards clouds? 
– E.g., Compare OpenStack and Globus
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Projects: 
Where to get your ideas from

• Read through papers. Read ahead! Read both main and optional papers.
• Leverage area overlaps: x was done for problem area 1, but not for problem 

area 2
• Look at hot areas:

– Stream processing
– Machine Learning
– IoT
– RDMA

• Look at the JIRAs of these projects
– Lots of issues listed but not being worked on
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Announcements
• Please sign up for a presentation/scriber slot by 

next Wednesday office hours
• Next up: Peer to peer systems
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