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The Key-value Abstraction

e (Business) Key = Value
* (twitter.com) tweet id = information about tweet

e (amazon.com) item number = information about
it

* (kayak.com) Flight number = information about
flight, e.g., availability

* (yourbank.com) Account number = information
about 1t




The Key-value Abstraction (2)

* It’s a dictionary datastructure.
* Insert, lookup, and delete by key
* E.g., hash table, binary tree

* But distributed.

e Sound familiar? Remember Distributed Hash
tables (DHT) in P2P systems?

* It’s not surprising that key-value stores reuse
many techniques from DHTs.




Isn’t that just a database?

* Yes, sort of

* Relational Database Management Systems
(RDBMSs) have been around for ages

*  MySQL is the most popular among them

 Data stored in tables
 Schema-based, i.e., structured tables

 FEach row (data item) in a table has a primary key
that 1s unique within that table

* Queried using SQL (Structured Query Language)
* Supports joins




Relational Database Example

users table
user_id name zipcode blog_url blog _id
101 Alice 12345 alice.net 1 Example SQL queries
1. SELECT zipcode
422 Charlie 45783 charlie.com 3 FROM users
WHERE name = “Bob”
555 Bob 99910 bob.blogspot.com 2
,I\ 1\ 2. SELECT url
FROM blog
3. SELECT users.zipcode, blog.num_posts
FROM users JOIN blog
blog table ON users.blog_url = blog.url
id url last_updated num_posts
1 alice.net 5/2/14 332
2 bob.blogspot.com 4/2/13 10003
3 charlie.com 6/15/14 7




Mismatch with today’s workloads

* Data: Large and unstructured

* Lots of random reads and writes
* Sometimes write-heavy

* Foreign keys rarely needed

* Joins infrequent




Needs of Today’s Workloads

* Speed

* Avoid Single point of Failure (SPoF)
 Low TCO (Total cost of operation)

* Fewer system administrators

* Incremental Scalability

* Scale out, not up

e What?




Scale out, not Scale up

*  Scale up = grow your cluster capacity by replacing with
more powerful machines

* Traditional approach
* Not cost-effective, as you’re buying above the sweet
spot on the price curve
* And you need to replace machines often
* Scale out = incrementally grow your cluster capacity by
adding more COTS machines (Components Off the Shelf)
* Cheaper
* Over a long duration, phase in a few newer (faster)
machines as you phase out a few older machines
* Used by most companies who run datacenters and
clouds today




Key-value/NoSQL Data Model

*  NoSQL = “Not Only SQL”
*  Necessary API operations: get(key) and put(key, value)

* And some extended operations, e.g., “CQL” in
Cassandra key-value store

e Tables

“Column families” in Cassandra, “Table” in HBase,
“Collection” in MongoDB

 Like RDBMS tables, but ...
* May be unstructured: May not have schemas
* Some columns may be missing from some rows

* Don’t always support joins or have foreign keys
* Can have index tables, just like RDBMSs




Key-value/NoSQL Data Model

VTue
Key
e  Unstructured [ |
users table
user_id name zipcode blog_url
e  Columns
. . 101 Alice 12345 alice.net
Missing from
some Rows 422 Charlie > charlie.com
555 9 W
e No schema
imposed Value
K \
1" { \
. blog table
° NO fOI:el.gn id url \ last_updated num_posts
keys, joins may <

1 lice. 2/ 2
not be alice.net 5 33
supported 2 bob.blogspot.com 10003

3 charlie.com 6/15/14




Column-Oriented Storage

NoSQL systems often use column-oriented storage

RDBMSs store an entire row together (on disk or at a
SErver)

NoSQL systems typically store a column together (or a
group of columns).

* Entries within a column are indexed and easy to
locate, given a key (and vice-versa)

Why useful?

* Range searches within a column are fast since you
don’t need to fetch the entire database

 E.g., Get me all the blog ids from the blog table that
were updated within the past month

* Search in the the last updated column, fetch
corresponding blog 1d column

* Don’t need to fetch the other columns




Next

Design of a real key-value store, Cassandra.




Cassandra

* A distributed key-value store

* Intended to run in a datacenter (and also across DCs)
* Originally designed at Facebook

* Open-sourced later, today an Apache project

* Some of the companies that use Cassandra in their
production clusters

* IBM, Adobe, HP, eBay, Ericsson, Symantec
* Twitter, Spotify
 PBS Kids

* Netflix: uses Cassandra to keep track of your
current position in the video you’re watching




Let’s go Inside Cassandra:

Key -> Server Mapping

* How do you decide which server(s) a key-value
resides on?




One ring per DC

Say m=7 N112 N16

(Remember this?)

Primary replica for
key K13

N32

N96
Read/write K13

/ NSO \_7'N45
\

- Coordinato :
it e Backup replicas for
key K13
Cassandra uses a Ring-based DHT but without finger tables or routing T
Key 2server mapping is the “Partitioner”




Data Placement Strategies

. Replication Strategy: two options:
1. SimpleStrategy
2. NetworkTopologyStrategy
1. SimpleStrategy: uses the Partitioner, of which there are two kinds

1. RandomPartitioner: Chord-like hash partitioning
2. ByteOrderedPartitioner: Assigns ranges of keys to servers.

* Easier for range gueries (e.g., Get me all twitter users starting
with [a-b])

2. NetworkTopologyStrategy: for multi-DC deployments

*  Two replicas per DC
e Three replicas per DC
e PerDC
* First replica placed according to Partitioner
* Then go clockwise around ring until you hit a different rack




Snitches

*  Maps: IPs to racks and DCs. Configured in cassandra.yaml
config file

*  Some options:
* SimpleSnitch: Unaware of Topology (Rack-unaware)

* RackInferring: Assumes topology of network by
octet of server’s IP address

e 101.201.202.203 = x.<DC octet>.<rack
octet>.<node octet>

* PropertyFileSnitch: uses a config file
* EC2Snitch: uses EC2.
* EC2 Region =DC
* Availability zone = rack
*  Other snitch options available




Writes

* Need to be lock-free and fast (no reads or disk seeks)

* Client sends write to one coordinator node in
Cassandra cluster
* Coordinator may be per-key, or per-client, or
per-query
* Per-key Coordinator ensures writes for the key
are serialized

* Coordinator uses Partitioner to send query to all
replica nodes responsible for key

*  When X replicas respond, coordinator returns an
acknowledgement to the client

e X? We’ll see later.




Writes (2)

* Always writable: Hinted Handoff mechanism

* If any replica 1s down, the coordinator writes to
all other replicas, and keeps the write locally
until down replica comes back up.

* When all replicas are down, the Coordinator
(front end) buffers writes (for up to a few hours).

* One ring per datacenter

e Per-DC leader can be elected to coordinate with
other DCs

* Election done via Zookeeper, which runs a
Paxos (consensus) variant

* Paxos: elsewhere 1n this course




Writes at a replica node

On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

* Memtable = In-memory representation of multiple key-
value pairs

* Cache that can be searched by key
*  Write-back cache as opposed to write-through

Later, when memtable 1s full or old, flush to disk

* Data File: An SSTable (Sorted String Table) — list of
key-value pairs, sorted by key

* Index file: An SSTable of (key, position in data sstable)
pairs

* And a Bloom filter (for efficient search) — next slide T




Bloom Filter

Compact way of representing a set of items
*  Checking for existence in set is cheap

*  Some probability of false positives: an item not in set may
check true as being in set

*  Never false negatives _
Large Bit Map

On insert, set all hashed bits.

On check-if-present,

return true if all hashed bits
set.

* False positives

wnn =0

Key-K

()]

False positive rate low
* k=4 hash functions
* 100items

111 * 3200 bits

* FPrate=0.02%

127 ][

o




Compaction

Data updates accumulate over time and SStables and
logs need to be compacted

* The process of compaction merges
SSTables, 1.€., by merging updates for a key

* Run periodically and locally at each server




Deletes

Delete: don’t delete item right away
* Add a tombstone to the log

Eventually, when compaction encounters
tombstone 1t will delete item




Read: Similar to writes, except

Coordinator can contact X replicas (e.g., in same rack)

* Coordinator sends read to replicas that have
responded quickest in past

*  When X replicas respond, coordinator returns the
latest-timestamped value from among those X

* (X? We’ll see later.)
Coordinator also fetches value from other replicas

 Checks consistency in the background, initiating a
read repair if any two values are different

* This mechanism seeks to eventually bring all replicas
up to date

A row may be split across multiple SSTables => reads need
to touch multiple SSTables => reads slower than writes

(but still fast)




Membership

* Any server in cluster could be the coordinator

* So every server needs to maintain a list of all the
other servers that are currently in the server

* List needs to be updated automatically as servers
join, leave, and fail




Cluster Membership — Gossip-Style

Cassandra uses gossip-based cluster membership 1| 10118 | 64
2| 10110 | 64
1| 10120 | 66 3| 10090 | 58
2 | 10103 | 62 4| 10111 | 65
3| 10098 | 63 2
4| 10111 | 65 1 l,
Address TirTne (local) 1] 10120 | 70
Heartbeat Counter 2 | 10110 | 64
3| 10098 | 70
Protocol: ° YRR -
*Nodes periodically gossip their

membership list 9

*On receipt, the local membership list is
updated, as shown (asynchronous clocks)

*If any heartbeat older than Tfail, node
is marked as failed ][

Current time : 70 at node 2



Suspicion Mechanisms in Cassandra

*  Suspicion mechanisms to adaptively set the timeout based
on underlying network and failure behavior

* Accrual detector: Failure Detector outputs a value (PHI)
representing suspicion
*  Apps set an appropriate threshold
*  PHI calculation for a member
* Inter-arrival times for gossip messages
 PHI(t) =
— log(CDF or Probability(t now —t last))/log 10

* PHI basically determines the detection timeout, but
takes into account historical inter-arrival time
variations for gossiped heartbeats

* In practice, PHI =5 => 10-15 sec detection time




Cassandra Vs. RDBMS

MySQL is one of the most popular (and has been for

a while)
e On>50GB data
« MySQL

*  Writes 300 ms avg

* Reads 350 ms avg
* (assandra

* Writes 0.12 ms avg

 Reads 15 ms avg
*  Orders of magnitude faster
 What’s the catch? What did we lose?




Mystery of “X”: CAP Theorem

* Proposed by Eric Brewer (Berkeley)

* Subsequently proved by Gilbert and Lynch (NUS and
MIT)

* In a distributed system you can satisfy at
most 2 out of the 3 guarantees:

1. Consistency: all nodes see same data at any time,
or reads return latest written value by any client

2. Availability: the system allows operations all the
time, and operations return quickly

3. Partition-tolerance: the system continues to work
in spite of network partitions



Why is Availability Important?

* Availability = Reads/writes complete reliably
and quickly.
* Measurements have shown that a 500 ms

increase in latency for operations at Amazon.com

or at Google.com can cause a 20% drop 1n
revenue.

At Amazon, each added millisecond of latency
implies a $6M yearly loss.

 SLAs (Service Level Agreements) written by
providers predominantly deal with latencies

faced by clients.



Why is Consistency Important?

* Consistency = all nodes see same data at any
time, or reads return latest written value by any

client.

*  When you access your bank or investment

account via multiple clients (laptop, workstation,
phone, tablet), you want the updates done from

one client to be visible to other clients.

*  When thousands of customers are looking to

book a flight, all updates from any client (e.g.,
book a flight) should be accessible by other

clients.



Why is Partition-Tolerance Important?

* Partitions can happen across datacenters when
the Internet gets disconnected

* Internet router outages
* Under-sea cables cut
* DNS not working

e Partitions can also occur within a datacenter,
e.g., a rack switch outage

* Still desire system to continue functioning
normally under this scenario




CAP Theorem Fallout

 Since partition-tolerance is essential in today’s cloud
computing systems, CAP theorem implies that a
system has to choose between consistency and
availability

e (Cassandra

* Eventual (weak) consistency, Availability,
Partition-tolerance

e Traditional RDBMSs

* Strong consistency over availability under a
partition




CAP Tradeoff

e Starting point for COnSiStency
NoSQL Revolution -

* A distributed storage
system can achieve at
most two of C, A, and

P. . HBase, HyperTable,
. When partition- BigTable, Spanner

tolerance 1s important,
you have to choose
between consistency
and availability

RDBMSs
(non-replicated)

Partition-tolerance Availability

Cassandra, Riak,
Dynamo, Voldemort




Eventual Consistency

* If all writes stop (to a key), then all its values
(replicas) will converge eventually.

* [fwrites continue, then system always tries to keep
converging.
*  Moving “wave” of updated values lagging behind the latest values
sent by clients, but always trying to catch up.

* May still return stale values to clients (e.g., if many
back-to-back writes).

* But works well when there a few periods of low
writes — system converges quickly.




RDBMS vs. Key-value stores

*  While RDBMS provide ACID
e Atomicity
* Consistency
* Isolation
* Durability
* Key-value stores like Cassandra provide BASE

* Basically Available Soft-state Eventual
Consistency

* Prefers Availability over Consistency




Back to Cassandra: Mystery of X

* (Cassandra has consistency levels

* Client is allowed to choose a consistency level for each
operation (read/write)

 ANY: any server (may not be replica)

» Fastest: coordinator caches write and replies
quickly to client

 ALL: all replicas
* Ensures strong consistency, but slowest
* ONE: at least one replica
e Faster than ALL, but cannot tolerate a failure

* QUORUM: quorum across all replicas 1n all
datacenters (DCs)

e What?




Quorums?

In a nutshell:
: Quorum = majority

. > 50% _-~=~, A'second
*  Any two quorums A quorum ,'/‘ Y, quorum
intersect P Ll 4 -
*  Client 1 does a 4 ’ Y B
write in red quorum ! . :' \. :
«  Then client 2 does Il ] ‘l -
read in blue \ ‘ \ v/
quorum N ' w7~ Aserver
. At least one server in blue N ol
quorum returns latest TNl _-- e
write
. Quorums faster than ALL, ‘ : : : '
but still ensure strong Five replicas of a key-value pair

consistency




Quorums in Detalil

* Several key-value/NoSQL stores (e.g., Riak and
Cassandra) use quorumes.

 Reads
* Client specifies value of R (< N = total number
of replicas of that key).

* R =read consistency level.

* Coordinator waits for R replicas to respond
before sending result to client.

* In background, coordinator checks for
consistency of remaining (N-R) replicas, and
initiates read repair if needed.




Quorums in Detail (Contd.)

*  Writes come in two flavors
e Client specifies W (< N)
* W = write consistency level.

* Client writes new value to W replicas and
returns. Two flavors:

* Coordinator blocks until quorum is
reached.

* Asynchronous: Just write and return.




Quorums in Detail (Contd.)

R =read replica count, W = write replica count
* Two necessary conditions:
1. W+R>N
2. W>N/2
* Select values based on application
 (W=I1, R=1): very few writes and reads
* (W=N, R=1): great for read-heavy workloads

 (W=N/2+1, R=N/2+1): great for write-heavy
workloads

* (W=1, R=N): great for write-heavy workloads
with mostly one client writing per key




Cassandra Consistency Levels (Contd.)

. Client 1s allowed to choose a consistency level for each operation
(read/write)

* QUORUM: quorum across all replicas 1n all

datacenters (DCs)
* Global consistency, but still fast

« LOCAL _QUORUM: quorum in coordinator’s DC

* Faster: only waits for quorum in first DC client contacts

« EACH QUORUM: quorum in every DC

* Lets each DC do its own quorum: supports hierarchical replies




Types of Consistency

* (Cassandra offers Eventual Consistency

* Are there other types of weak consistency
models?




Consistency Spectrum

<€

Faster reads and writes

More consistency Strong
Eventual > (e.g., Sequential)




Spectrum Ends: Eventual Consistency

* (Cassandra offers Eventual Consistency

» If writes to a key stop, all replicas of key
will converge

* Origmally from Amazon’s Dynamo and
LinkedIn’s Voldemort systems

<€
Faster reads and writes

More consistency Strong
Eventual > (e.g., Sequential)




Spectrum Ends: Strong Consistency Models

 Linearizability: Each operation by a client is visible (or available)
instantaneously to all other clients

e Instantaneously in real time

. Sequential Consistency [Lamport]:

* " the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations ]qf each individual processor appear in this sequence in the
order specified by its program.

*  After the fact, find a “reasonable” ordering of the operations (can re-
order operations) that obeys sanity (consistency) at all clients, and
across clients.

*  Transaction ACID properties, e.g., newer key-value/NoSQL stores
(sometimes called “NewSQL”)
*  Hyperdex [Cornell]
*  Spanner [Google]
e  Transaction chains [Microsoft Research]
*  Yesquel, Tapir, etc.




Newer Consistency Models

* Striving towards strong consistency
*  While still trying to maintain high availability
and partition-tolerance

Red-Blue
Causal Probabilistic

Per-key sequential Strong
Eventual CRDTs (e.g., Sequential)




Newer Consistency Models (Contd.)

* Per-key sequential: Per key, all operations have a global
order

 CRDTs (Commutative Replicated Data Types): Data

structures for which commutated writes give same result
[INRIA, France]

 E.g., value == int, and only op allowed is +1

» Effectively, servers don’t need to worry about

consistency
Red-Blue
Causal Probabilistic
Per-key sequential Strong

Eventual CRDTs (e.g., Sequential)




Newer Consistency Models (Contd.)

* Red-blue Consistency: Rewrite client transactions to
separate ops into red ops vs. blue ops [MPI-SWS Germany|

* Blue ops can be executed (commutated) in any order

across DCs
* Red ops need to be executed in the same order at each
DC
Red-Blue
Causal Probabilistic
Per-key sequential Strong

Eventual CRDTs (e.g., Sequential)




Newer Consistency Models (Contd.)

Causal Consistency: Reads must respect partial order based on information flow [Princeton,
CMU]  W(KT, 33)

Client A >
N W(K2, 55)
Client B wr Fﬁ_ —»  Time
R(KY) returns 33 s
\ 7 ‘\s
Client C | \ g em——— > J" —
| \ [ = AN N
W(K \ /Iﬁ(KT) may return Y h
(K1,22) | e 55 or 33 N R(X1) must return 33
\ s by
v’ R(K2) returns 55
Causality, not messages
Red-Blue
Causal Probabilistic
Per-key sequential Strong

Eventual CRDTs (e.g., Sequential)




Which Consistency Model should you use?

* Use the lowest consistency (to the left)
consistency model that 1s “correct” for your
application

* Gets you fastest availability

Red-Blue
Causal Probabilistic
Per-key sequential Strong

Eventual CRDTs (e.g., Sequential)




HBase

* Google’s BigTable was first “blob-based” storage
system

* Yahoo! Open-sourced it > HBase

* Major Apache project today

* Facebook uses HBase internally

* API functions
* Get/Put(row)
* Scan(row range, filter) — range queries
* MultiPut

* Unlike Cassandra, HBase prefers consistency (over
availability)




HBase Architecture

_ Small group of servers running
________ Zab, a consensus protocol (Paxos-like)

-
-
-
-
-
-
-
-
-
-
-
-

Client - HMaster

HRegionServer HLog \ HRegionServer
Hregion \
Store MemStore Store MemStore \
StoreFile StoreFile o StoreFile StoreFiIe\\
HFile HFile HFile HFile
\\
\ 4 \l
HDFS ][




HBase Storage hierarchy

 HBase Table
* Split it into multiple regions: replicated across servers

* ColumnFamily = subset of columns with similar query
patterns

* One Store per combination of ColumnFamily + region

* Memstore for each Store: in-memory updates to
Store; flushed to disk when full

» StoreFiles for each store for each region:
where the data lives

- HFile

« HFile
* SSTable from Google’s BigTable




Data Data . Metadata, file info, indices, and trailer

Magic | (Key, value) |(Key, value) ... (Key, value)

Key Value |Row Row | Col Family| Col Family | Col Timestamp Key |Value
length length |length length Qualifier type

SSN:000-01-2345 Demographic

Ethnicity
Information
|
HBase Key




Strong Consistency: HBase Write-Ahead Log

Client HRegion Store MemStore
2. (k1
\( StoreFile StoreFile
(k1, k2, k3, k4) HFile HFile
)
HRegionServer[ _
——> HRegion
(k3, k4) 1. (k1) _
Store MemStore
Log Qush StoreFile StoreFile
HFile HFile
\ 4

/ HLog

/

Write to HLog before writing to MemStore
Helps recover from failure by replaying Hlog.




Log Replay

* After recovery from failure, or upon bootup
(HRegionServer/HMaster)

* Replay any stale logs (use timestamps to
find out where the database i1s w.r.t. the logs)

* Replay: add edits to the MemStore




Cross-Datacenter Replication

* Single “Master” cluster
* Other “Slave” clusters replicate the same tables

* Master cluster synchronously sends HLogs over
to slave clusters

* (Coordination among clusters 1s via Zookeeper

* Zookeeper can be used like a file system to store
control information

1. /hbase/replication/state
2. /hbase/replication/peers/<peer cluster number>
3. /hbase/replication/rs/<hlog>




MongoDB: A NoSQL System Installation

e http://www.mongodb.org/downloads

e http://docs.mongodb.org/manual/installation
* mongod --dbpath <path-to-data>
* Mongo

* (MongoDB slides adapted from Mainak Ghosh’s
slides)




Data Model

* Stores data in form of BSON (Binary JavaScript
Object Notation) documents

d
name: "travis",
salary: 30000,
designation: "Computer Scientist",
teams: [ "front-end", "database" ]
h

e @Group of related documents with a shared
common index is a collection




MongoDB: Typical Query

Query all employee names with salary greater than 18000 sorted 1n ascending order
db employee ﬁnd({salary {$gt 18000} {name 1}}) sort({salary 1})

v
Collectlon Condltlon Projection Modlﬁer

{salary:25000, ...}

{salary:10000, ...}

{salary:25000, ... {salary:20000, ...

{salary:20000, ...}
{salary:20000, ...

ey {salary:30000, ...
{salary:21000, ...

{salary:21000, ...

= {salary:25000, ...
{salary:30000, ...

{salary:2000, ...}
{salary:30000, ...}
{salary:21000, ...}

_— e e md
_— e e emd

{salary:50000, ... {salary:50000, ...

{salary:5000, ...}
{salary:50000, ...}




Insert

Insert a row entry for new employee Sally

db.employee.insert({
name: "sally",
salary: 15000,
designation: "MTS",
teams: [ "cluster-management" |

i)




Update

All employees with salary greater than 18000 get a designation of Manager

db.employee.update(
Update Criteria {salary:{$gt:18000} },
Update Action {$set: {designation: "Manager"}},
Update Option {multi: true}

)

Multi-option allows multiple document update




Delete

Remove all employees who earn less than 10000

db.employee.remove(
Remove Criteria {salary: {$1t:10000} },

)

Can accept a flag to limit the number of documents removed




Typical MongoDB Deployment

* Data split into chunks, based on

Replica Se’% shard key (~ primary key)

\ A \ A \ * Either use hash or range-
q partitioning
MONEgOo . : :
mongod ] g ] mongod ] Shard: co!lectlon of chur-1ks
* Shard assigned to a replica set
'T‘ | * Replica set consists of multiple

mongod servers (typically 3
mongod’s)

e Replica set members are mirrors of

each other
\L * Oneis primary
e QOthers are secondaries

* Routers: mongos server receives
client queries and routes them to
right replica set

G ° * Config server: Stores collection level
____metadata.

[

Router (mongos) Router (mongos)




Replication




Replication

* Uses an oplog (operation log) for data sync up

* Oplog maintained at primary, delta
transferred to secondary continuously/every
once in a while

When needed, leader Election protocol elects a
master

* Some mongod servers do not maintain data but
can vote — called as Arbiters




Read Preference

* Determine where to route read operation
* Default is primary. Some other options are
e primary-preferred
* secondary
* nearest
* Helps reduce latency, improve throughput
* Reads from secondary may fetch stale data




Write Concern

* Determines the guarantee that MongoDB
provides on the success of a write operation

* Default 1s acknowledged (primary returns answer
immediately).

* Other options are
* journaled (typically at primary)
* replica-acknowledged (quorum with a
value of W), etc.

*  Weaker write concern implies faster write time




Write operation performance

* Journaling: Write-ahead logging to an on-disk
journal for durability

* Indexing: Every write needs to update every
index associated with the collection




Balancing

* Over time, some chunks may get larger than
others

* Splitting: Upper bound on chunk size; when hit,
chunk 1s split

* Balancing: Migrates chunks among shards 1f
there 1s an uneven distribution




Consistency

» Strongly Consistent: Read Preference 1s Master

* Eventually Consistent: Read Preference 1s Slave
(Secondary)

* CAP Theorem: Under partition, MongoDB
becomes write unavailable thereby ensuring
consistency




Performance

e 30— 50x faster than SQL Server 2008 for
writes|[1]
e At least 3x faster for reads[1]

*  MongoDB 2.2.2 offers slower throughput for
different YCSB workloads compared to
Cassandra[2]

[1] http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-2008-

performance-showdown/

[2] http://hyperdex.org/performance/




Summary

e Traditional Databases (RDBMSs) work with strong
consistency, and offer ACID

* Modern workloads don’t need such strong guarantees, but
do need fast response times (availability)

*  Unfortunately, CAP theorem
* Key-value/NoSQL systems offer BASE

* Eventual consistency, and a variety of other
consistency models striving towards strong
consistency

*  We discussed design of
e (Cassandra
 Hbase
e MonocolDR




Optional: Some more MongoDB
gueries



Insert

Insert a row entry for new employee Sally
use records -- Creates a database

db.employee.insert({
name: "Sally",

salary: 15000,
designation: "MTS",
teams: "cluster-management"

7)

Also can use save instead of insert




Bulk Load

people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy",
"Greg", "Steve", "Kristina", "Katie", "Jeft"];

money = [10000, 5000, 8000, 2000];

position = ["MTS", "Computer Scientist", "Manager", "Director"];

groups = ["cluster-management", "human-resource", "backend", "ui"];

b

for(var 1=0; 1<10000; 1++){
name = people[Math.floor(Math.random()*people.length)];
salary = money[Math.floor(Math.random()*money.length)];

designation =
position[Math.floor(Math.random()*position.length)];

teams = groups[Math.floor(Math.random()*groups.length)];

. . db.employee.save({name:name, salary:salary,
designation:designation, teams:teams});

)




db.employee.find()

db.employee.find({name: "Sally"})

var cursor = db.employee.find({salary: {$in:
[5000, 2000] } } )

Use next() to access the rest of the records




db.employee.find({name: "Steve", salary: {$lt:
3000} })

db.employee.find( { $or: [ { name: "Bill" }, {
salary: { $gt: 9000 } } ]})

Find records of all managers who earn more than
5000

db.employee.find({designation:"Manager",
salary: {$gt: 5000} })




Aggregation Commands

* db.employee.count()

* How many employees with name Steve?

* db.employee.find({name: "Steve"}).count()

* db.employee.find({name: "Steve"}).skip(10)
* db.employee.find({name: "Steve"}).limit(10)




Modify

* Increment salary of all managers by 1000

* db.employee.update( { designation : "Manager"
+, { $inc : { salary : 1000 } })

* db.employee.update( { designation : "Manager"
}, { $inc : { salary : 1000 } } , { multi: true } )

* Increment salary of all managers working in
cluster-management group by 5000

* db.employee.update( { designation : "Manager",

teams: "cluster-management"}, { $inc : { salary :

5000 } } , { multi: true } )



Remove

* db.employee.remove( { name : "Sally" } )
* Remove all Computer Scientist in the u1 division

* db.employee.remove( {teams: "u1", designation:
"Computer Scientist"} )




