Network Games

Brighten Godfrey CS 538 March 26 2018

slides ©2010-2018 by Brighten Godfrey unless otherwise noted

Demo

Game theory basics

Game theory

Studies interaction between selfish agents

Networking Enables interaction between agents

Networks make games happen!

Game theory

Components defining a game

- Two or more players
- Set of strategies for each player
- For each combination of played strategies, a payoff or utility for each player

Prisoner's Dilemma

Blue player strategies

egies		Cooperate	Defect
ayer strat	Cooperate	- ,-	-12,0
	Defect	0 , - 2	-5, -5
Sed pl			

A chosen strategy for each player such that no player can improve its (expected) utility by changing its strategy

- Pure strategy: player picks single deterministic action
- Mixed strategy: player picks random strategy according to some distribution

Can you find a Nash equilibrium?

Blue player strategies

Prisoner's dilemma Nash eq.

Blue player strategies

Red player strategies

Prisoner's dilemma Nash eq.

Blue player strategies

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 2001]

Rock Paper Scissors

Blue player strategies

anarchy in practice for latency-optimized routing? Internet routing as a game players autonomous systems

strategies pick a route, any route... (to fixed dest.)

player's utility arbitrary function of route (but $-\infty$ for 'illegal' route not offered by neighbor)

players autonomous systems

strategies pick a route, any route... (to fixed dest.)

player's utility arbitrary function of route (but $-\infty$ for 'illegal' route not offered by neighbor)

In general, NP-complete to decide whether an equilibrium exists [Griffin, Shepherd, Wilfong, ToN'02]

Might have 0, 1, 2, 3, ... equilibria

Even if it has an equilibrium, might not converge to it

- Depends on starting state, message timing, ...
- PSPACE-complete to decide whether a given set of BGP preferences can oscillate [Fabrikant, Papadimitriou, SODA'08]

If we assume customer-provider-peer and valley-free routing, guaranteed to converge [Gao, Rexford]

Recall "Gao-Rexford" policies:

- Prefer customer > peer > provider
- Export all routes to customers
- Export customer routes to everyone
- (...and export nothing else: "valley-free" routes only)
- Further assume no provider-customer cycles
 - Not allowed: A is customer of B which is customer of ... which is customer of A

Subject to these constraints, BGP will converge

How bad is selfish routing?

The selfish routing game

The game context:

- Directed graph
- Latency function on each edge specifying latency as function of total flow x on edge
- Path latency = sum of edge latencies

Flow x = 0.5 on each path; Total latency = 1.5

The selfish routing game

Player strategy:

- Pick a path on which to route
- Players selfishly pick paths with lowest latency (source-controlled routing)

For now assume:

- many users
- each has negligible load
- total load = I

Flow x = 0.5 on each path; Total latency = 1.5

Example: Braess's paradox

[Dietrich Braess, 1968]

Initially: 0.5 flow along each path; latency 1+0.5 = 1.5With new edge: all flow along greed path; latency = 2

Example: Braess's paradox

Optimal latency = 1.5

Nash equilibrium latency = 2

Thus, price of anarchy = 4/3

From links to springs

[Cohen and Horowitz, Nature 352, 699 - 701 (22 August 1991)]

Example: arbitrarily bad

Optimal: almost all flow on bottom; total latency near zero

Nash: all flow on bottom; total latency = 1 As we just saw, price of anarchy can be arbitrarily high

But for linear latency functions: PoA $\leq 4/3$

For any latency function: Nash cost is at most optimal cost of 2x as much flow

Extension to finitely many agents

- i.e., a single agent might have a nontrivial fraction of the total bandwidth
- Splittable flow: similar "2x" result
- Unsplittable flow: can be very bad

Selfish routing in realistic networks

[Qiu et al., SIGCOMM 2003]

link utilization

to optimal latency

Qiu et al: Selfish competing w/TE

Competing systems

- Senders pick lowest latency paths
- TE computes its paths
- But now lowest latency paths have changed... iterate!

Discussion

- Are these results positive or negative?
- Examples of similar competing overlays?

How would the traffic engineering systems we learned about earlier interact with this framework?

 Suppose the network is running a near-optimal TE underneath selfish overlay routing. Would the overlay end up doing anything nontrivial?

Max utilization is higher in selfish. Does it matter?

Is average latency the right objective for the user?

Game theory used in networking to model

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

Many more applications of game theory to CS

- ...and applications of CS to game theory!
- See Nisan, Roughgarden, Tardos, Vazirani's book Algorithmic Game Theory, available free online