
NLP from 
(almost) Scratch

Bhuvan Venkatesh, Sarah 
Schieferstein (bvenkat2, 

schfrst2)



Introduction



Motivation
● Models for NLP have become too specific
● We engineer features and hand pick models so that we 

boost the accuracy on certain tasks
● We don’t want to create a general AI, but we also want 

machine learning models to share parameters



Importance
● Just to reiterate - this paper is seminal
● They were using Neural Nets in 2011, way before they 

were cool
● They also unearthed some challenges about the neural nets 

and the amount of data needed.
● The coolest part is that it doesn’t need to be labeled, 

cheapening the entire training process



Existing Benchmarks



Tasks
● The paper focuses on 4 similar but unrelated tasks

○ POS - Part of Speech tagging
○ CHUNK - Chunking
○ NER - Named Entity Recognition
○ SRL - Semantic Role Labeling

● For the metrics for POS, they used Accuracy. For 
everything else, they use F1 score.



Traditional Systems
● Traditional Systems have pretty good accuracy. Most of 

them are ensemble models that incorporate a bunch of 
classical NLP features and use a standard algorithm like 
SVM  [3] or Markov Model [2]

● Some of the models use bidirectional models like a BiLSTM 
to capture context from both ends





Notes
● Only chose systems that didn’t dabble with external data. 

Meaning they didn’t train with extra data or didn’t 
introduced additional features (i.e. POS for NER task) using 
either another ML algorithm or hand drawn annotating.

● The features ended up being heavily engineered for the 
task at hand to achieve hair-pin accuracy



Network Approach



Overview
● We are going to preprocess features as little as possible and 

feed a representation into the neural net. 
● If we want to put any discrete features like POS, 

capitalization, or stems, we can concatenate a one-hot 
encoded vector turning the feature “on”



Windowed vs Convolutional
● The authors described two flavors of neural networks. One 

considers a window of words with word paddings
● The other is a sentence approach that takes a convolutional 

filter of a certain size and applies it before performing the 
neural model









Additional Considerations
● The max layer is a pooling layer with a variable sized 

window so that there are a constant number of features (if 
not some padding is added)

● For all tasks but POS, they will use IOBES encoding which 
mean: Inside, Other, Beginning, Ending, Single. This is so 
that each word turns into a classification task which is 
easily measured through F1

● For some tasks, they put in stemming or capitalization



Embeddings
● For this stage of the algorithm we are going to learn the 

embeddings along with the neural net. We initialize the 
word embeddings randomly and train using back prop.

● Spoiler Alert: This will tend not to be a good idea because 
the Nets would like to have a fixed representation



Two Gradients, both alike in dignity
● Windowed Gradient - Use cross entropy with a softmax, 

pushing down all non relevant probabilities. 
● They mention that this is a problem because cross entropy 

is good with low covariant features but tags usually depend 
on the context surrounding them



Gradient 1



What of Capulet? (Sentence Loss)
● Sentence level gradient - We are going to use a trellis to 

illustrate what this does
● We introduce new transition parameters A that give the 

probability of going from tag 1 to tag 2 in a sentence. We 
will train it with the rest of the model.

● We take all possible paths through the tags and words and 
softmax the probability of all paths with the actual path the 
word takes





Notation
●                            - The probability of sentence x starting at 

element number 1 has a particular tag sequence [i] starting 
at tag 1

●                                         - The A term is the probability that tag 
[i]_{t-1} turns into [i]_{t} at time t. The f term is the 
probability that the word takes tag [i]_t at time t. (Time 
being number word in the sentence)

● Logadd is logadd previously





But wait, Loss Function?
● The unoptimized loss function becomes exponential to 

compute and the gradient as such.
● They way the optimize it is using the ring properties of the 

loss function
● The same effect can be achieved by running a modified 

Viterbi algorithm that stores the cumulative sum and the 
current path probabilities



Inference?
● At inference time for the windowed approach, just take the 

argmax of the output layer in the neural network to find the 
class of the word in the middle of the window

● For the other approach, use the neural net to get a list of tag 
probabilities at a particular time. Then use the Viterbi 
algorithm to predict the most likely sequence of labelings.



Note: Conditional Random Fields
● Similar but there are a few differences, one being that our 

path probability function is not normalized (which in 
training can help avoid the label-bias problem where a 
sequence of states may be less likely than a state-to-state 
probability) [5]

● But in a different sense, this is the same as training a CRF 
except now we are training a non-linear model to get the 
output activations instead of a linear one.



Training?
● Train with stochastic gradient descent, nothing fancy
● For the windowed approach, compute the gradient in the 

window; the sentence approach, the gradient in the whole 
sentence

● Hyperparameters chosen by validation, learning rate does 
not change over time though so convergence is not 
guaranteed.



Hyperparameters



Results



Performance
● Not too bad for out of the box performance with minimal 

tuning. It matches with the baseline fairly well within single 
1-7% percent differences of specialized models

● Very low learning parameter, so it takes a long time to learn
● Small window so results are expected for long term 

dependencies





Better Word Embeddings 
with Unlabeled Data



How to get better word embeddings?
● Since the lookup table has many parameters (ddim x 

|Dictionary|) = (50 x 100,000) we need more data
● Use massive amounts of unlabeled data to make a 

window-approach language model



Datasets
● Entire English wikipedia (631 million words) tokenized with Penn 

Treebank script
○ Regular WSJ dictionary of 100k most frequent words
○ OOV replaced with RARE

● Reuters RCV1 (221 million words)
○ Regular WSJ dictionary of 100k most frequent word + 30k 

most frequent words from this dataset
○ Perhaps adding more unlabeled data will make our model 

better?



If it’s unlabeled, how does it train?
We want to convince the model to produce LEGAL phrases.

Legal = window seen in training data

Illegal = window not seen in training data

We don’t need labels for this.



Which training criterion?
Cross-entropy

● Used in our supervised models
● Normalization term is costly
● Favors frequent phrases too 

much
● Weights rare and legal phrases 

less
● We want to learn rare syntax as 

well to train word embeddings, 
though!

Pairwise ranking

● Only wants to rank one in pair as 
better

● Does not favor the ‘best’ ranking, 
so rare legal phrases are favored 
as much as frequent legal phrases

● Useful for word embeddings 
because all legal syntax is learned 



Pairwise Ranking Criterion

● Attempts to make legal score >= 1 greater than ANY illegal score
○ X: All windows in training data
○ D: All words in dictionary
○ x(w): window with center word replaced with w. An illegal 

phrase
● Because it is pairwise and ranked, all contexts are learned and 

treated equally despite frequency unlike in cross-entropy



Training the model
● Use SGD to minimize the criterion
● Computers were slow and it took weeks to train models this 

large



Hyperparameter choice through breeding
● Since it was so slow in 2011, we use the biological idea of 

“breeding” instead of a full grid search

Breeding process given k processors and hyper-parameters λ, d, nh
hu

, 
d

win

1. Train k models over several days with k different parameter sets

2. Select the best models based on validation set tests with lowest pairwise ranking loss (error)

3. Choose k new parameter sets that are permutations that are close to the best candidates

4. Initialize each new network with earlier embeddings and use a larger dictionary size each time



Word embedding results
Both models used d

win
 = 11, nh

hu
 = 100. All other parameters 

matched the labeled networks. 

Wikipedia LM’s shortest euclidean distance from 

word embeddings of various frequencies. More 

frequent to less.

France ~ Austria!



Supervised models with these embeddings
● ‘Semi-supervised’
● Initialize lookup tables with 

embeddings from either language 
model

● Separate long embedding training 
from fast supervised taggers

Performance increases with 

pre-trained embeddings!

Still not better than 

feature-engineered benchmarks



Multitask Learning



A Single Model
● Now that our models behave well separately, we wish to combine 

them into one.
● Input = text with several features/labels, output = POS, 

CHUNK, NER, SRL

How do we do this? Will it boost performance as the tasks learn from 
each other?



Method 1: Joint decoding
● Don’t train tasks together at all.
● Combine all of the models’ predictions and decode their results 

in the same probability space 
● This method ignores any inter-task dependencies; joint training 

is usually superior



Method 2: Joint training
● Helps discover common internal representations across tasks
● Simplest method is training tasks simultaneously by sharing 

certain parameters
● Some parameters are denoted as task-specific and not shared



How did this paper jointly train?
● Shared parameters: lookup table, first hidden layer OR 

convolutional layer
● The last layer is not shared and is task-specific
● Average loss is minimized across all tasks with SGD

○ At each iteration, pick a random example from a random task
○ Apply the backpropagation results to the respective model’s 

task-specific parameters AND its shared parameters



General Example of MTL with NN
Shared parameters

Shared parameters

Task-specific parameters



Models created:
1. POS, CHUNK, NER trained jointly with window network. The 

first linear layer parameters were shared. The lookup table 
parameters were shared. 

2. POS, CHUNK, NER, SRL trained jointly with sentence network. 
Convolutional layer parameters were shared. The lookup table 
parameters were shared.



Results
Doesn’t increase performance much; language model word embeddings 

helped more

Good news: we have a model that takes input and outputs labels for 3+ 

tasks, and it is nearly as accurate as the much slower and complex 

benchmarks.



Task Specific Optimizations



(almost) & the temptation
● We’ve been doing NLP from scratch this whole time
● What happens if we utilize a priori knowledge and feature 

engineer on these neural networks? We are already close to 
state of the art without them...



Suffix Features
● Suffixes can predict syntactic function (-ly for adverbs, -ed 

for verbs…)

● In the POS task: add discrete word features in the form of a 
suffix dictionary

○ Use the last two characters of every word



Gazetteers
● Gazetteers: a large dictionary of well known named entities

○ 4 categories: locations, names, orgs, misc. = 4 features
● In the NER task: if a chunk is in the gazetteer, the chunk’s 

words in the respective feature/category is turned to ‘on’
● Vastly improves NER, likely due to chunk information (our 

language model does not consider chunks)



Cascading
● Use features obtained from previous tasks
● For CHUNK and NER: add discrete word features that 

represent POS tag of each word





Ensembles
● Combine outputs of multiple classifiers (with random initial 

parameters)
● Done for POS, CHUNK, NER
● Voting ensemble: take majority vote, one vote is the tag 

each model estimated
● Joined ensemble: combine model outputs (NOT tags, the 

feature vectors) with another linear layer, then finally feed 
to SLL. This doesn’t perform as well as voting.





Parsing
● In SRL task: feed in a parse tree and its successive ‘levels’ (i.e. collapsing 

terminals upward)



Increases slowly



SENNA - the final implementation in C
● Uses the best feature-engineered models described above 

(beat the state of the art), but it’s also really fast



Last Thought
Why ignore these 
task-specific engineered 
features? Why abandon it    
all for neural networks?

No NLP task covers the 
goals of NLP. Generally, 
task-specific engineering 
should not be the end goal of 
NLP (understanding text 
completely).



Thanks! Any Questions?
(We know it was a long paper)



Sources
1. Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal of Machine Learning Research 

12.Aug (2011): 2493-2537.
2. Toutanova, Kristina, et al. "Feature-rich part-of-speech tagging with a cyclic dependency network." Proceedings of 

the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human 
Language Technology-Volume 1. Association for Computational Linguistics, 2003.

3. Sha, Fei, and Fernando Pereira. "Shallow parsing with conditional random fields." Proceedings of the 2003 
Conference of the North American Chapter of the Association for Computational Linguistics on Human Language 
Technology-Volume 1. Association for Computational Linguistics, 2003.

4. Ni, Yepeng, et al. "An indoor pedestrian positioning method using HMM with a fuzzy pattern recognition algorithm in 
a WLAN fingerprint system." Sensors 16.9 (2016): 1447.

5. Lafferty, John, Andrew McCallum, and Fernando CN Pereira. "Conditional random fields: Probabilistic models for 
segmenting and labeling sequence data." (2001).


