NLP from

(almost) Scratch

Bhuvan Venkatesh, Sarah
Schieferstein (bvenkat2,
schirst2)




Introduction



Motivation

e Models for NLP have become too specific
e \Weengineer features and hand pick models so that we

boost the accuracy on certain tasks
e Wedon't want to create a general Al, but we also want

machine learning models to share parameters




Importance

e Justtoreiterate - this paper is seminal

e They were using Neural Netsin 2011, way before they
were cool

e They alsounearthed some challenges about the neural nets
and the amount of data needed.

e The coolest partisthat it doesn’t need to be labeled,
cheapening the entire training process



Existing Benchmarks



Tasks

e The paper focuses on 4 similar but unrelated tasks
o PQOS - Part of Speech tagging
o CHUNK - Chunking
o NER-Named Entity Recognition
o SRL-Semantic Role Labeling

e For the metrics for POS, they used Accuracy. For
everything else, they use F1 score.




Traditional Systems

Traditional Systems have pretty good accuracy. Most of
them are ensemble models that incorporate a bunch of
classical NLP features and use a standard algorithm like
SVM [3] or Markov Model [2]

Some of the models use bidirectional models like a BiLSTM
to capture context from both ends




System Fl

System Accuracy
Shen et al. (2007) 97.33%
Toutanova et al. (2003) 97.24%
Giménez and Marquez (2004) 97.16%
(a) POS
System Fl
Ando and Zhang (2005) 89.31%
Florian et al. (2003) 88.76%
Kudo and Matsumoto (2001) 88.31%
(c) NER

Shen and Sarkar (2005) 95.23%
Sha and Pereira (2003) 94.29%
Kudo and Matsumoto (2001) 93.91%

(b) CHUNK

System Fl

Koomen et al. (2005) 77.92%
Pradhan et al. (2005)  77.30%
Haghighi et al. (2005) 77.04%

(d) SRL



Notes

e Only chose systems that didn’t dabble with external data.
Meaning they didn’t train with extra data or didn’t
introduced additional features (i.e. POS for NER task) using
either another ML algorithm or hand drawn annotating.

e The features ended up being heavily engineered for the
task at hand to achieve hair-pin accuracy




Network Approach



Overview

e \We are going to preprocess features as little as possible and
feed arepresentation into the neural net.

e |f we want to put any discrete features like POS,
capitalization, or stems, we can concatenate a one-hot
encoded vector turning the feature “on”



Windowed vs Convolutional

e The authors described two flavors of neural networks. One
considers a window of words with word paddings

e Theotherisasentence approach that takes a convolutional
filter of a certain size and applies it before performing the
neural model



Input Window

word of interest

Text cat sat on the mat
Feature 1 w% w% w}v
Feature K wff wé{ wll\(;

U
Lookup Table L
LTyw:1 AN~

d
LTwx N~ ERE

——__ concat

_—9




ST concat
A4

e —

Linear
M x 6—)

e
hu

L2

HardTanh ¥
f M

- .

Linear .

M? xcﬁ\r)

Nho = F#tags




Input Sentence

Text
Feature 1

TFeature K

Lookup Table
LTy AN~

LTwk AN~

Convolution

Max Over Time
max(-) AN~

buppod

E

The cat sat on the mat
1 1 1

wy Wy ok wN
wkK  wi wfy

Busppod

([TTIED

<@

<a



Additional Considerations

The max layer is a pooling layer with a variable sized
window so that there are a constant number of features (if
not some padding is added)

For all tasks but POS, they will use IOBES encoding which
mean: Inside, Other, Beginning, Ending, Single. This is so
that each word turns into a classification task which is
easily measured through F1

For some tasks, they put in stemming or capitalization




Embeddings

e For this stage of the algorithm we are going to learn the
embeddings along with the neural net. We initialize the
word embeddings randomly and train using back prop.

oc N
oW); {lsrs;[ww} of"

e Spoiler Alert: This will tend not to be a good idea because
the Nets would like to have a fixed representation




Two Gradients, both alike in dignity

e Windowed Gradient - Use cross entropy with a softmax,
pushing down all non relevant probabilities.
e They mention that this is a problem because cross entropy

is good with low covariant features but tags usually depend
on the context surrounding them



Gradient 1

e[fe]z'

p(ilx,0) = .
Zje[fe]j

logaddz; = log(z &),




What of Capulet? (Sentence Loss)

Sentence level gradient - We are going to use a trellis to
illustrate what this does

We introduce new transition parameters A that give the
probability of going from tag 1 to tag 2 in a sentence. We
will train it with the rest of the model.

We take all possible paths through the tags and words and
softmax the probability of all paths with the actual path the
word takes




Vi
V3

V2

vy

NP O CD
g N\

Pv,|ly)




Notation

o ([x7,[i],8) - The probability of sentence x starting at
element number 1 has a particular tag sequence [i] starting
attagl |

o [ . teln: -TheAtermisthe probability that tag
[i] {t-1}turnsinto [i] {t} attimet. The f term s the
probability that the word takes tag[i]_t at time t. (Time
being number word in the sentence)

e |ogadd islogadd previously




s(elT, 17,8 = 3 (Ml 0, + Veli)

=1

logp([y]lT | [x]{’ é) = S([x]{’ b’]{’ g) _lovg[f_}gds([x]{’ [J]IT’ é) .



But wait, Loss Function?

The unoptimized loss function becomes exponential to
compute and the gradient as such.

They way the optimize it is using the ring properties of the
loss function

The same effect can be achieved by running a modified
Viterbi algorithm that stores the cumulative sum and the
current path probabilities




Inference?

At inference time for the windowed approach, just take the
argmax of the output layer in the neural network to find the
class of the word in the middle of the window

For the other approach, use the neural net to get a list of tag
probabilities at a particular time. Then use the Viterbi
algorithm to predict the most likely sequence of labelings.




Note: Conditional Random Fields

e Similar but there are a few differences, one being that our
path probability function is not normalized (which in
training can help avoid the label-bias problem where a
sequence of states may be less likely than a state-to-state
probability) [5]

e Butinadifferent sense, thisis the same as training a CRF
except now we are training a non-linear model to get the
output activations instead of a linear one.



Training?

e Trainwith stochastic gradient descent, nothing fancy

e For the windowed approach, compute the gradient in the
window; the sentence approach, the gradient in the whole
sentence

e Hyperparameters chosen by validation, learning rate does

not change over time though so convergence is not
guaranteed.



Hyperparameters

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate

POS = 5 =50 d'= n; =300 A =0.01
CHUNK 2 2 2 2 2

NER 2 2 2 2 2

SRL 2 29 2 nilll = 300 2



Results

Approach POS | Chunking | NER | SRL
(PWA) (F1) (F1) | (FI)

Benchmark Systems | 97.24 94.29 8931 | 11.92

NN+WLL 96.31 89.13 79.53 | 55.40
NN+SLL 96.37 90.33 81.47 | 70.99




Performance

e Not too bad for out of the box performance with minimal
tuning. It matches with the baseline fairly well within single
1-7% percent differences of specialized models

e Verylow learning parameter, so it takes a long time to learn

e Small window so results are expected for long term
dependencies




FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
PERSUADE THICKETS DECADENT  WIDESCREEN ODD PPA
FAW SAVARY DIVO ANTICA ANCHIETA UDDIN
BLACKSTOCK SYMPATHETIC VERUS SHABBY EMIGRATION BIOLOGICALLY
GIORGI JFK OXIDE AWE MARKING KAYAK
SHAHEED KHWARAZM URBINA THUD HEUER MCLARENS
RUMELIA STATIONERY EPOS OCCUPANT SAMBHAIJI GLADWIN
PLANUM ILIAS EGLINTON REVISED WORSHIPPERS CENTRALLY
GOA’ULD GSNUMBER EDGING LEAVENED RITSUKO INDONESIA
COLLATION OPERATOR FRG PANDIONIDAE LIFELESS MONEO
BACHA W.J. NAMSOS SHIRT MAHAN NILGIRIS



Better Word Embeddings
with Unlabeled Data



How to get better word embeddings?

e Since the lookup table has many parameters (ddim x
|Dictionary|) = (50 x 100,000) we need more data

e Use massive amounts of unlabeled data to make a
window-approach language model



Datasets

e Entire English wikipedia (631 million words) tokenized with Penn
Treebank script
o Regular WSJ dictionary of 100k most frequent words
o OOV replaced with RARE
e Reuters RCV1 (221 million words)
o Regular WSJ dictionary of 100k most frequent word + 30k
most frequent words from this dataset
o Perhaps adding more unlabeled data will make our model
better?




If it’s unlabeled, how does it train?

We want to convince the model to produce LEGAL phrases.
Legal = window seen in training data

lllegal = window not seen in training data

We don’t need labels for this.




Which training criterion?

Cross-entropy

pli|x,0) =

zje[fe], '

Used in our supervised models
Normalization term is costly
Favors frequent phrases too
much

Weights rare and legal phrases
less

We want to learn rare syntax as
well to train word embeddings,
though!

e[fe]: H(p, q) = — Zp(a:) logq(:v).

Pairwise ranking

00 Y Y max {0, 1- fye) + fo(=™) }

reX weD

e Onlywantstorankonein pair as
better

e Does not favor the ‘best’ ranking,
so rare legal phrases are favored
as much as frequent legal phrases

e Useful for word embeddings
because all legal syntax is learned



Pairwise Ranking Criterion

6 Y ¥ max{0,1-fo(x)+ (") }

XeEXweD

e Attemptsto make legal score >= 1 greater than ANY illegal score
o X:Allwindows in training data
o D:Allwords indictionary
o x™: window with center word replaced with w. An illegal
phrase
e Becauseitis pairwise and ranked, all contexts are learned and
treated equally despite frequency unlike in cross-entropy



Training the model

e Use SGD to minimize the criterion
e Computers were slow and it took weeks to train models this
large



Hyperparameter choice through breeding

e Sinceitwassoslowin 2011, we use the biological idea of
“breeding” instead of a full grid search

Breeding process given k processors and hyper-parameters A, d, nhhu,
win
Train k models over several days with k different parameter sets
Select the best models based on validation set tests with lowest pairwise ranking loss (error)

1
2
3. Choose k new parameter sets that are permutations that are close to the best candidates
4

Initialize each new network with earlier embeddings and use a larger dictionary size each time



Word embedding results

Both modelsusedd . =11, nhhu = 100. All other parameters
matched the labeled networks.

FRANCE JESUS XBOX REDDISH  SCRATCHED  MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/s
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
[ France ~ Austria! ] ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH  CRIMPED CARATS
SWEDEN INDRA  PSNUMBER  GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED  MEGAHERTZ
EUROPE ANANDA  DREAMCAST WHITISH  SECTIONED  MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND  GRACE CAPCOM YELLOWISH RIPPED AMPERES

Wikipedia LM’s shortest euclidean distance from
word embeddings of various frequencies. More

freguent to less.



Supervised models with these embeddings

e ‘Semi-supervised’

e Initialize lookup tables with Approach POS | CHUNK | NER | SRL
. : PwWA) | F1) | (FD) | FY)
embeddings from either language Benchmark Systems | 97.24 9129 | 89.31 | 77.92
model NN+WLL 96.31 | 89.13 | 79.53 | 55.40

. o NN+SLL 96.37 | 90.33 | 81.47 | 70.99

e Separate long embedding training NN+WLLFLMI 97.05 | 9191 | 85.68 | 58.18
¢ f i<ed NN+SLL+LM1 97.10 | 9365 | 87.58 | 73.84
rom fast supervised taggers NN+WLL+LM2 07.14 | 92.04 | 86.96 | 58.34
NN+SLL+LM2 97.20 | 9363 | 88.67 | 74.15

Performance increases with
pre-trained embeddings!

Still not better than
feature-engineered benchmarks



Multitask Learning



A Single Model

e Now that our models behave well separately, we wish to combine

them into one.
e [nput = text with several features/labels, output = POS,

CHUNK, NER, SRL

How do we do this? Will it boost performance as the tasks learn from
each other?




Method 1: Joint decoding

e Don’t train tasks together at all.
e Combine all of the models’ predictions and decode their results

in the same probability space
e This method ignores any inter-task dependencies; joint training

is usually superior



Method 2: Joint training

e Helps discover common internal representations across tasks
e Simplest method is training tasks simultaneously by sharing

certain parameters
e Some parameters are denoted as task-specific and not shared



How did this paper jointly train?

e Shared parameters: lookup table, first hidden layer OR
convolutional layer
e Thelastlayeris not shared and is task-specific
e Average lossis minimized across all tasks with SGD
o Ateachiteration, pick arandom example from a random task
o Apply the backpropagation results to the respective model’s
task-specific parameters AND its shared parameters



General Example of MTL with NN

[ Shared parameters ]

Lookup Table Lookup Table

L aeieaed |

[ g

Linear v J, Linear 4
[ IR AYAAAVAYAYS ' L EAVAVAVAVAV, 3 ]

o] P

HardTanh v HardTanh A 4
- 2 ] | ]

9 v

Linear v Linear Y

My x0 Ay [

Task 1

Task-specific parameters ]




Models created:

1. POS, CHUNK, NER trained jointly with window network. The
first linear layer parameters were shared. The lookup table
parameters were shared.

2. POS, CHUNK, NER, SRL trained jointly with sentence network.
Convolutional layer parameters were shared. The lookup table
parameters were shared.



Results

Doesn'’t increase performance much; language model word embeddings

helped more

Approach POS | CHUNK | NER | SRL
(PWA) (F1) (F1) | (F1)
Benchmark Systems | 97.24 94.29 89.31 -

Window Approach
NN+SLL+LM2 97.20 93.63 88.67
NN+SLL+LM2+MTL | 97.22 94.10 88.62
Sentence Approach
NN+SLL+LM2 97.12 93.37 88.78 | 74.15
NN+SLL+LM2+MTL | 97.22 93.75 88.27 | 74.29

Good news: we have a model that takes input and outputs labels for 3+
tasks, and it is nearly as accurate as the much slower and complex
benchmarks.



Task Specific Optimizations



(almost) & the temptation

e We've been doing NLP from scratch this whole time

e What happens if we utilize a priori knowledge and feature
engineer on these neural networks? We are already close to
state of the art without them...



Suffix Features

e Suffixes can predict syntactic function (-ly for adverbs, -ed
for verbs...)

e Inthe POS task: add discrete word features in the form of a
suffix dictionary

o Use the last two characters of every word



Gazetleers

e Gazetteers: alarge dictionary of well known named entities
o 4 categories: locations, names, orgs, misc. = 4 features

e |nthe NER task:if achunkisinthe gazetteer, the chunk’s
words in the respective feature/category is turned to ‘on’

e Vastly improves NER, likely due to chunk information (our
language model does not consider chunks)




Cascading

e Use features obtained from previous tasks
e For CHUNK and NER: add discrete word features that
represent POS tag of each word



Approach POS | CHUNK | NER | SRL
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 | 77.92
NN+SLL+LM2 97.20 93.63 88.67 | 74.15
NN+SLL+LM2+Suffix2 97.29 - - -
NN+SLL+LM2+Gazetteer - - 89.59 -
NN+SLL+LM2+POS - 88.67 | -

NN+SLL+LM24+CHUNK - - - 74.72




Ensembles

e Combine outputs of multiple classifiers (with random initial
parameters)

e Done for POS, CHUNK, NER

e Voting ensemble: take majority vote, one vote is the tag
each model estimated

e Joined ensemble: combine model outputs (NOT tags, the
feature vectors) with another linear layer, then finally feed
to SLL. This doesn’t perform as well as voting.




Approach POS | CHUNK | NER
(PWA) (FI) (F1)
Benchmark Systems 97.24 94.29 8931
NN+SLL+LM2+POS worst 97.29 93.99 89.35
NN+SLL+LM2+POS mean 97.31 94.17 89.65
NN+SLL+LM2+POS best 97.35 94.32 89.86
NN+SLL+LM2+POS voting ensemble | |97.37 94.34 89.70
NN+SLL+LM2+POS joined ensemble | 97.30 94.35 89.67




Parsing

e [nSRL task:feed in a parse tree and its successive ‘levels’ (i.e. collapsing

terminals upward)

NP"'//;:;S\
7 | P \

LEVEL 0 Ihe luxury auto maker

last year sold / \
BeNP [-NP I-NP E=NP B-NP E=NP SeVP NP
.‘ll cars in I
B-NP E-NP S-PP e
the U.S.
B-NP E=NP

I'he luxury anto maker last year / \
LEVEL 1 A/ S . B sold 1,214 cars

B=VP VP E-VP I

in the U.S.
BeFP 1=PP E-PP

vp
LEVEL 2 Ihe luxury auto maker last year

|
o WL 9 RO TOL 0 sold 1.214 cars in the US.

BeVP 1=VP I=VP VP 1=VP E=\P



Approach SRL
(valid) (test)
Benchmark System (six parse trees) 11.36 TI92
Benchmark System (top Charniak parse tree only) | 74.76 —
NN+SLL+LM2 1229 74.15
NN+SLL+LM2+Charniak (level O only) 74.44  75.65
NN+SLL+LM2+Charniak (levels 0 & 1) 74.50 75.81
NN+SLL+LM2+Charniak (levels 0 t0 2) | creasesisiowyl 79-09  76.05
NN-+SLL+LM2+Charniak (levels 0 to 3) 75.12. 75.89
NN+SLL+LM2+Charniak (levels 0to 4) .~ | 7542 76.06
NN+SLL+LM2+CHUNK - 74.72
NN+SLL+LM2+PTO - 75.49




SENNA - the final implementation in C

e Usesthe best feature-engineered models described above
(beat the state of the art), but it’s also really fast

POS System RAM (MB) Time (s)
Toutanova et al. (2003) 800 64
Shen et al. (2007) 2200 833
SENNA 32 4

SRL System RAM (MB) Time (s)
Koomen et al. (2005) 3400 6253
SENNA 124 51




Last Thought

Why ignore these No NLP task covers the
task-specific engineered goals of NLP. Generally,

features? Why abandon it j> task-specific engineering
all for neural networks? should not be the end goal of
NLP (understanding text

completely).




Thanks! Any Questions?
(We know it was a long paper)



sources

1. Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal of Machine Learning Research
12.Aug (2011): 2493-2537.

2. Toutanova, Kristina, et al. "Feature-rich part-of-speech tagging with a cyclic dependency network." Proceedings of
the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human
Language Technology-Volume 1. Association for Computational Linguistics, 2003.

3. Sha, Fei, and Fernando Pereira. "Shallow parsing with conditional random fields." Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on Human Language
Technology-Volume 1. Association for Computational Linguistics, 2003.

4. Ni, Yepeng, et al. "An indoor pedestrian positioning method using HMM with a fuzzy pattern recognition algorithm in
a WLAN fingerprint system." Sensors 16.9 (2016): 1447.

5. Lafferty, John, Andrew McCallum, and Fernando CN Pereira. "Conditional random fields: Probabilistic models for
segmenting and labeling sequence data." (2001).



