Recurrent Neural Network
Grammars

NAACL-HLT 2016
Authors: Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, Noah A. Smith
Presenter: Che-Lin Huang

* Sequential recurrent neural networks (RNNs) are remarkably
effective models of natural language

* Despite these impressive results, sequential models are not
appropriate models of natural language

* Relationships among words are largely organized in terms of
latent nested structures rather than sequential order

* A new generative probabilistic model of sentences that
explicitly models nested, hierarchical relationships among
words and phrases

* RNNGs maintain the algorithmic convenience of transition
based parsing but incorporate top-down syntactic
information

* They give two variants of the algorithm, one for parsing, and
one for generation:

* The parsing algorithm transforms a sequence of words x
Into a parse tree y

* The generation algorithm stochastically generates
terminal symbols and trees with arbitrary structures

Top-down variant of transition-based
parsing algorithm

* Begin with the stack (S) empty, the complete sequence of

words in the input buffer (B), and zero number of open
nonterminals on the stack (n)

* Stack: terminal symbols, open nonterminal symbols, and
complete constituents

* Input buffer: unprocessed terminal symbols
* Three classes of operations: NT(X), SHIFT, and REDUCE

Stack; Buffer; Open NTs; | Action | Stack::; Buffer;.;1 Open NTs; 1
S B n NT(X) | S| (X B n+1

S z | B n SHIFT S|z B n
S|X|mn|...|m B n REDUCE | S| (X7 ... 7w) B n—1

Top-down variant of transition-based
parsing algorithm

* Terminate when both criterions meet:
1. A single completed constituent on the stack
2. The buffer is empty
* Constraints on parser transitions:
1. NT(X) can only be applied if B is not empty and n < 100
2. SHIFT can only be applied if B is not empty andn>1
3. REDUCE can only be applied if n > 2 or if the buffer is empty

4. REDUCE can only be applied if the top of the stack is not
an open nonterminal symbol

Parser transitions and parsing example

Stack; Buffer; Open NTs; | Action | Stack;;; Buffer;; Open NTs;;;
S B n NT(X) | S| (X B n+1
S z|B n SHIFT S|z B n
S|X|m|...|m B n REDUCE | S| (X7 ...) B n—1
Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat | meows |. | NT(S)

1| (S The | hungry | cat | meows |. | NT(NP)

2 | (S| (NP The | hungry | cat | meows |. | SHIFT

3 | (S|(NP|The hungry | cat | meows | . SHIFT

4 | (S|(NP|The | hungry cat | meows | . SHIFT

s | (S| (NP |The | hungry | cat meows | . REDUCE

6 | (S| (NP The hungry cat) meows | . NT(VP)

7 | (S| (NP The hungry cat) | (VP meows | . SHIFT

s | (S| (NP The hungry cat) | (VP meows REDUCE

o | (S| (NP The hungry cat) | (VP meows) SHIFT

10 | (S| (NP The hungry cat) | (VP meows) |. REDUCE

11 | (S (NP The hungry cat) (VP meows) .)

e Can be adapted from parsing algorithm with minor changes
* No input buffer, instead there is an output buffer (T)

* No SHIFT operation, instead there is GEN(x) operation that
generate terminal symbol and add it to the top of stack and
the output buffer

* Constraints on generator transitions:
1. GEN(x) can only be appliedifn>1

2.REDUCE can only be applied if the top of the stack is
not an open nonterminal symbolandn>1

Generator transitions and generation example

Stack; Terms; Open NTs; | Action Stack;. 1 Terms;,; Open NTs;
S T n NT(X) | S| (X T n+1
S T n GEN(z) | S| =z T|z n
S| X|n|...|m T n REDUCE | S| (X7 ... m) T n—1
Stack Terminals Action
0 NT(S)
1| (S NT(NP)
2 | (S| (NP GEN(The)
3 | (S| (NP |The The GEN (hungry)
4 | (S| (NP|The | hungry The | hungry GEN(cat)
s | (S| (NP |The | hungry | cat The | hungry | cat REDUCE
6 | (S| (NP The hungry cat) The | hungry | cat NT(VP)
7 | (S| (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
s | (S| (NP The hungry cat) | (VP meows The | hungry | cat| meows | REDUCE
9 | (S| (NP The hungry cat) | (VP meows) | The | hungry|cat| meows | GEN(.)
10 | (S| (NP The hungry cat) | (VP meows) |. | The | hungry | cat| meows |. | REDUCE
11 | (S (NP The hungry cat) (VP meows) .) The | hungry | cat | meows | .

Generative model

* RNNGs use the generator transition set to define a joint
distribution on syntax trees (y) and words (x), which is a
sequence model over generator transitions that is
parameterized using a continuous space embedding of the
algorithm state at each time step (uy):

la(z,y)|

p(z,y) = || pla]a<)
t=1

|a(w’y)| exp r;-t ut + bat

=
t=1 EGIEAG(Tt’St,nt) eXpr, Ut + by

Uy = tanh (W[Ot; St ht] + C)

Syntactic composition function

* The output buffer, stack, and history can grow unboundedly

* To obtain representations of them, they use RNN to encode
their content

e Qutput buffer and history apply a standard RNN encoding
* Stack is more complicated, use stack LSTMs to encode

* To compute an embedding of this new subtree, use a
composition function based on bidirectional LSTMs:

4
B
“

i
\d

' NP / NP

Neural architecture

&
cw—— p(ay)
St 1 - T
- - \ / 'y \ —
P > < -
(S NP (VP cat hungry The

/I\ At

The hungry cat

* Neural architecture for defining a distribution over a; given
representations of the stack (S;), output buffer (T¢) and
history of actions (a¢)

Inference via importance sampling

* To evaluate the generative model as a language model, we
need to compute the marginal probability: p(x) =

ZyIEy, p(x,y")
* Use a conditional proposal distribution g(y|x) with properties:
Lp(x,y) >0=q(ylx) >0
2. Samples y~qg(y|x) can be obtained efficiently
3. g(y|x) of these samples are known

* Importance weights: w(x,y) = p(x,y)/q(y|x)

= > pxy)=) qyl|z)w(zy)

ye)(z) ye)(z))
MC
- Eq(yl:c)w(ma y) Z 'w(a: y(z

English parsing result

Model type | F;

Vinyals et al. (2015)* -~ WSJonly | D | 88.3
Henderson (2004) D | 894
Socher et al. (2013a) D |904
Zhu et al. (2013) D | 904
Petrov and Klein (2007) G |90.1
Bod (2003) G |90.7
Shindo et al. (2012) — single G | 911
Shindo et al. (2012) — ensemble G | 924
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S 92.1
Discriminative, q(y |)" —buggy | D | 89.8
Generative, p(y |) — buggy G |924
Discriminative, g(y |) —correct | D | 91.7
Generative, p(y | «) — correct G | 933

* Parsing results on Penn
Treebank

* D: discriminative
* G: generative

* S: semisupervised
* F1 score:

precisionXrecall
F, =2 x100%

precision + recall

Chinese parsing result

Model type | F1

Zhu et al. (2013) D | 82.6
Wang et al. (2015) D | 832
Huang and Harper (2009) D | 84.2
Charniak (2000) G | 80.8
Bikel (2004) G | 806
Petrov and Klein (2007) G | 833
Zhu et al. (2013) S | 856
Wang and Xue (2014) S 86.3
Wang et al. (2015) S 86.6
Discriminative, q(y |)" -buggy | D | 80.7
Generative, p(y |)T - buggy G | 827
Discriminative, g(y |) —correct | D | 84.6
Generative, p(y |) — correct G | 86.9

* Parsing results on Penn
Chinese Treebank

* D: discriminative
* G: generative
* S: semisupervised

* F1 score:
precisionXrecall
F1 - 2

— x100%
precision + recall

Language model result

* Report per-word perplexities of three language models

* Cross-entropy:

H(p,q) = — Z p(x) log,q(x)

» per-word perplexities :

H(p.,q)
27 N
Model test ppl (PTB) | test ppl (CTB)
IKN 5-gram 169.3 255.2
LSTM LM 1134 207.3
RNNG 102.4 171.9

* The generative model is quite effective as a parser and a
language model. This is the result of:

* Relaxing conventional independence assumptions

* Inferring continuous representations of symbols alongside
non-linear models of their syntactic relationships

* Discriminative model performs worse than generative model:

* Larger, unstructured conditioning contexts are harder to
learn from

* It provide opportunities to overfit

Thank you!

