
Recurrent Neural Network
Grammars

NAACL-HLT	2016
Authors:	Chris	Dyer,	Adhiguna Kuncoro,	Miguel	Ballesteros,	Noah	A.	Smith

Presenter:	Che-Lin	Huang



Motivation

• Sequential	recurrent	neural	networks	(RNNs)	are	remarkably	
effective	models	of	natural	language
• Despite	these	impressive	results,	sequential	models	are	not	
appropriate	models	of	natural	language	
• Relationships	among	words	are	largely	organized	in	terms	of	
latent	nested	structures	rather	than	sequential	order



Overview of RNNG

• A	new	generative	probabilistic	model	of	sentences	that	
explicitly	models	nested,	hierarchical	relationships	among	
words	and	phrases
• RNNGs	maintain	the	algorithmic	convenience	of	transition	
based	parsing	but	incorporate	top-down	syntactic	
information
• They	give	two	variants	of	the	algorithm,	one	for	parsing,	and	
one	for	generation:
• The	parsing	algorithm	transforms	a	sequence	of	words	!
into	a	parse	tree	"
• The	generation	algorithm	stochastically	generates	
terminal	symbols	and	trees	with	arbitrary	structures



Top-down	variant	of	transition-based	
parsing	algorithm
• Begin	with	the	stack	(S)	empty,	the	complete	sequence	of	
words	in	the	input	buffer	(B),	and	zero	number	of	open	
nonterminals on	the	stack	(n)
• Stack:	terminal	symbols,	open	nonterminal	symbols,	and	
complete	constituents
• Input	buffer:	unprocessed	terminal	symbols
• Three	classes	of	operations:	NT(X),	SHIFT,	and	REDUCE



Top-down	variant	of	transition-based	
parsing	algorithm

• Terminate	when	both	criterions	meet:
1.	A	single	completed	constituent	on	the	stack
2.	The	buffer	is	empty

• Constraints	on	parser	transitions:
1.	NT(X)	can	only	be	applied	if	B	is	not	empty	and	n	<	100	
2.	SHIFT	can	only	be	applied	if	B	is	not	empty	and	n	≥	1
3.	REDUCE	can	only	be	applied	if	n	≥	2	or	if	the	buffer	is	empty
4.	REDUCE	can	only	be	applied	if	the	top	of	the	stack	is	not	
an	open	nonterminal	symbol



Parser	transitions	and	parsing	example



Generation	algorithm

• Can	be	adapted	from	parsing	algorithm	with	minor	changes
• No	input	buffer,	instead	there	is	an	output	buffer	(T)
• No	SHIFT	operation,	instead	there	is	GEN(x)	operation	that	
generate	terminal	symbol	and	add	it	to	the	top	of	stack	and	
the	output	buffer
• Constraints	on	generator	transitions:

1.	GEN(x)	can	only	be	applied	if	n	≥	1
2.REDUCE	can	only	be	applied	if	the	top	of	the	stack	is	
not	an	open	nonterminal	symbol	and	n	≥	1



Generator transitions and generation example



Generative model

• RNNGs	use	the	generator	transition	set	to	define	a	joint	
distribution	on	syntax	trees	(")	and	words	(!),	which	is	a	
sequence	model	over	generator	transitions	that	is	
parameterized	using	a	continuous	space	embedding	of	the	
algorithm	state	at	each	time	step	(#$):



Syntactic composition function

• The	output	buffer,	stack,	and	history	can	grow	unboundedly
• To	obtain	representations	of	them,	they	use	RNN	to	encode	
their	content
• Output	buffer	and	history	apply	a	standard	RNN	encoding
• Stack	is	more	complicated,	use	stack	LSTMs	to	encode
• To	compute	an	embedding	of	this	new	subtree,	use	a	
composition	function	based	on	bidirectional	LSTMs:	



Neural architecture

• Neural	architecture	for	defining	a	distribution	over	%$ given	
representations	of	the	stack	(&$),	output	buffer	('$)	and	
history	of	actions	(%($)



Inference via importance sampling

• To	evaluate	the	generative	model	as	a	language	model,	we	
need	to	compute	the	marginal	probability:	) ! =
∑ )(!, ".)�
1.∈3

• Use	a	conditional	proposal	distribution	4 " !) with	properties:
1.	)(!, ") > 0 ⟹ 4("|!) > 0
2.	Samples	y~4("|!) can	be	obtained	efficiently
3.	4("|!) of	these	samples	are	known

• Importance	weights:	; !, " = )(!, ")/4("|!)



English parsing result

• Parsing	results	on	Penn	
Treebank	
• D:	discriminative
• G:	generative
• S:	semisupervised
• F1	score:	
=> = 2

)@ABCDCEF×@AB%HH
)@ABCDCEF + @AB%HH

×100%



Chinese parsing result

• Parsing	results	on	Penn	
Chinese	Treebank	
• D:	discriminative
• G:	generative
• S:	semisupervised
• F1	score:	
=> = 2

)@ABCDCEF×@AB%HH
)@ABCDCEF + @AB%HH

×100%



Language model result

• Report	per-word	perplexities	of	three	language	models
• Cross-entropy:	

L ), 4 = −N) !
�

O

HEPQ4(!)

• per-word	perplexities	:	
2
R S,T
U



Conclusion

• The	generative	model	is	quite	effective	as	a	parser	and	a	
language	model.	This	is	the	result	of:
• Relaxing	conventional	independence	assumptions
• Inferring	continuous	representations	of	symbols	alongside	
non-linear	models	of	their	syntactic	relationships

• Discriminative	model	performs	worse	than	generative	model:
• Larger,	unstructured	conditioning	contexts	are	harder	to	
learn	from
• It	provide	opportunities	to	overfit



Thank	you!


