Recurrent Neural Network Grammars

NAACL-HLT 2016

Authors: Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, Noah A. Smith

Presenter: Che-Lin Huang

Motivation

- Sequential recurrent neural networks (RNNs) are remarkably effective models of natural language
- Despite these impressive results, sequential models are not appropriate models of natural language
- Relationships among words are largely organized in terms of latent nested structures rather than sequential order

Overview of RNNG

- A new generative probabilistic model of sentences that explicitly models nested, hierarchical relationships among words and phrases
- RNNGs maintain the algorithmic convenience of transition based parsing but incorporate top-down syntactic information
- They give two variants of the algorithm, one for parsing, and one for generation:
 - ullet The parsing algorithm transforms a sequence of words x into a parse tree y
 - The generation algorithm stochastically generates terminal symbols and trees with arbitrary structures

Top-down variant of transition-based parsing algorithm

- Begin with the stack (S) empty, the complete sequence of words in the input buffer (B), and zero number of open nonterminals on the stack (n)
- Stack: terminal symbols, open nonterminal symbols, and complete constituents
- Input buffer: unprocessed terminal symbols
- Three classes of operations: NT(X), SHIFT, and REDUCE

\mathbf{Stack}_t	\mathbf{Buffer}_t	Open NTs_t	Action	$ $ Stack $_{t+1}$	\mathbf{Buffer}_{t+1}	Open NTs $_{t+1}$
\overline{S}	B	n	NT(X)	S (X	B	n+1
S	$x \mid B$		SHIFT	l •	B	n
$S \mid (X \mid \tau_1 \mid \ldots \mid \tau_\ell$	B	n	REDUCE	$S \mid (X \tau_1 \ldots \tau_\ell)$	B	n-1

Top-down variant of transition-based parsing algorithm

- Terminate when both criterions meet:
 - 1. A single completed constituent on the stack
 - 2. The buffer is empty
- Constraints on parser transitions:
 - 1. NT(X) can only be applied if B is not empty and n < 100
 - 2. SHIFT can only be applied if B is not empty and $n \ge 1$
 - 3. REDUCE can only be applied if $n \ge 2$ or if the buffer is empty
 - 4. REDUCE can only be applied if the top of the stack is not an open nonterminal symbol

Parser transitions and parsing example

\mathbf{Stack}_t	\mathbf{Buffer}_t	Open NTs_t	Action	$ $ Stack $_{t+1}$	\mathbf{Buffer}_{t+1}	Open NTs_{t+1}
\overline{S}	B	n	NT(X)	S (X	B	n+1
S	$x \mid B$	n	SHIFT	$S \mid x$	B	n
$S \mid (X \mid \tau_1 \mid \ldots \mid \tau_\ell$	B	n	REDUCE	$S \mid (X \tau_1 \ldots \tau_\ell)$	B	n-1

Input: The hungry cat meows.

	Stack	Buffer	Action
0		The hungry cat meows .	NT(S)
1	(S	The hungry cat meows .	NT(NP)
2	(S (NP	The hungry cat meows .	SHIFT
3	(S (NP <i>The</i>	hungry cat meows .	SHIFT
4	(S (NP The hungry)	cat meows .	SHIFT
5	(S (NP The hungry cat	meows .	REDUCE
6	(S (NP The hungry cat)	meows .	NT(VP)
7	(S (NP The hungry cat) (VP	meows .	SHIFT
8	(S (NP The hungry cat) (VP meows		REDUCE
9	(S (NP The hungry cat) (VP meows)		SHIFT
10	(S (NP The hungry cat) (VP meows) .		REDUCE
11	(S (NP The hungry cat) (VP meows).)		

Generation algorithm

- Can be adapted from parsing algorithm with minor changes
- No input buffer, instead there is an output buffer (T)
- No SHIFT operation, instead there is GEN(x) operation that generate terminal symbol and add it to the top of stack and the output buffer
- Constraints on generator transitions:
 - 1. GEN(x) can only be applied if $n \ge 1$
 - 2.REDUCE can only be applied if the top of the stack is not an open nonterminal symbol and $n \ge 1$

Generator transitions and generation example

\mathbf{Stack}_t	\mathbf{Terms}_t	Open NTs_t	Action	$ $ Stack $_{t+1}$	\mathbf{Terms}_{t+1}	Open NT s_{t+1}
\overline{S}	T	n	NT(X)	S (X	T	n+1
S	T		GEN(x)		$T \mid x$	n
$S \mid (X \mid \tau_1 \mid \ldots \mid \tau_\ell)$	T	n	REDUCE	$S \mid (X \tau_1 \ldots \tau_\ell)$	T	n-1

	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(The)
3	(S (NP <i>The</i>	The	GEN(hungry)
4	(S (NP The hungry	The hungry	GEN(cat)
5	(S (NP The hungry cat	The hungry cat	REDUCE
6	(S (NP The hungry cat)	The hungry cat	NT(VP)
7	(S (NP The hungry cat) (VP	The hungry cat	GEN(meows)
8	(S (NP The hungry cat) (VP meows	The hungry cat meows	REDUCE
9	(S (NP The hungry cat) (VP meows)	The hungry cat meows	GEN(.)
10	(S (NP The hungry cat) (VP meows) .	The hungry cat meows .	REDUCE
11	(S (NP The hungry cat) (VP meows).)	The hungry cat meows .	

Generative model

• RNNGs use the generator transition set to define a joint distribution on syntax trees (y) and words (x), which is a sequence model over generator transitions that is parameterized using a continuous space embedding of the algorithm state at each time step (u_t) :

$$p(\boldsymbol{x}, \boldsymbol{y}) = \prod_{t=1}^{|\boldsymbol{a}(\boldsymbol{x}, \boldsymbol{y})|} p(a_t \mid \boldsymbol{a}_{< t})$$

$$= \prod_{t=1}^{|\boldsymbol{a}(\boldsymbol{x}, \boldsymbol{y})|} \frac{\exp \mathbf{r}_{a_t}^{\top} \mathbf{u}_t + b_{a_t}}{\sum_{a' \in \mathcal{A}_G(T_t, S_t, n_t)} \exp \mathbf{r}_{a'}^{\top} \mathbf{u}_t + b_{a'}}$$

$$\mathbf{u}_t = \tanh \left(\mathbf{W}[\mathbf{o}_t; \mathbf{s}_t; \mathbf{h}_t] + \mathbf{c} \right)$$

Syntactic composition function

- The output buffer, stack, and history can grow unboundedly
- To obtain representations of them, they use RNN to encode their content
- Output buffer and history apply a standard RNN encoding
- Stack is more complicated, use stack LSTMs to encode
- To compute an embedding of this new subtree, use a composition function based on bidirectional LSTMs:

Neural architecture

• Neural architecture for defining a distribution over a_t given representations of the stack (S_t) , output buffer (T_t) and history of actions $(a_{< t})$

Inference via importance sampling

- To evaluate the generative model as a language model, we need to compute the marginal probability: $p(x) = \sum_{y' \in \mathcal{Y}} p(x, y')$
- Use a conditional proposal distribution q(y|x) with properties:
 - 1. $p(x, y) > 0 \Longrightarrow q(y|x) > 0$
 - 2. Samples $y \sim q(y|x)$ can be obtained efficiently
 - 3. q(y|x) of these samples are known
- Importance weights: w(x, y) = p(x, y)/q(y|x)

$$egin{aligned} p(oldsymbol{x}) &= \sum_{oldsymbol{y} \in \mathcal{Y}(oldsymbol{x})} p(oldsymbol{x}, oldsymbol{y}) &= \sum_{oldsymbol{y} \in \mathcal{Y}(oldsymbol{x})} p(oldsymbol{x}, o$$

English parsing result

Model	type	$ F_1 $
Vinyals et al. (2015)* – WSJ only	D	88.3
Henderson (2004)	D	89.4
Socher et al. (2013a)	D	90.4
Zhu et al. (2013)	D	90.4
Petrov and Klein (2007)	G	90.1
Bod (2003)	G	90.7
Shindo et al. (2012) – single	G	91.1
Shindo et al. (2012) – ensemble	G	92.4
Zhu et al. (2013)	S	91.3
McClosky et al. (2006)	S	92.1
Vinyals et al. (2015)	S	92.1
Discriminative, $q(\boldsymbol{y} \mid \boldsymbol{x})^{\dagger}$ – buggy	D	89.8
Generative, $\hat{p}(\boldsymbol{y} \mid \boldsymbol{x})^{\dagger}$ – buggy	G	92.4
Discriminative, $q(\boldsymbol{y} \mid \boldsymbol{x})$ – correct	D	91.7
Generative, $\hat{p}(\boldsymbol{y} \mid \boldsymbol{x})$ – correct	G	93.3

- Parsing results on Penn Treebank
- D: discriminative
- G: generative
- S: semisupervised
- F1 score:

$$F_1 = 2 \frac{precision \times recall}{precision + recall} \times 100\%$$

Chinese parsing result

Model	type	$\mathbf{F_1}$
Zhu et al. (2013)	D	82.6
Wang et al. (2015)	D	83.2
Huang and Harper (2009)	D	84.2
Charniak (2000)	G	80.8
Bikel (2004)	G	80.6
Petrov and Klein (2007)	G	83.3
Zhu et al. (2013)	S	85.6
Wang and Xue (2014)	S	86.3
Wang et al. (2015)	S	86.6
Discriminative, $q(\boldsymbol{y} \mid \boldsymbol{x})^{\dagger}$ - buggy	D	80.7
Generative, $\hat{p}(\boldsymbol{y} \mid \boldsymbol{x})^{\dagger}$ - buggy	G	82.7
Discriminative, $q(\boldsymbol{y} \mid \boldsymbol{x})$ – correct	D	84.6
Generative, $\hat{p}(\boldsymbol{y} \mid \boldsymbol{x})$ – correct	G	86.9

 Parsing results on Penn Chinese Treebank

• D: discriminative

• G: generative

S: semisupervised

• F1 score:

$$F_1 = 2 \frac{precision \times recall}{precision + recall} \times 100\%$$

Language model result

- Report per-word perplexities of three language models
- Cross-entropy:

$$H(p,q) = -\sum_{x} p(x) \log_2 q(x)$$

per-word perplexities :

$$2^{\frac{H(p,q)}{N}}$$

Model	test ppl (PTB)	test ppl (CTB)	
IKN 5-gram	169.3	255.2	
LSTM LM	113.4	207.3	
RNNG	102.4	171.9	

Conclusion

- The generative model is quite effective as a parser and a language model. This is the result of:
 - Relaxing conventional independence assumptions
 - Inferring continuous representations of symbols alongside non-linear models of their syntactic relationships
- Discriminative model performs worse than generative model:
 - Larger, unstructured conditioning contexts are harder to learn from
 - It provide opportunities to overfit

Thank you!