
Security & Privacy Research at Illinois (SPRAI)

Professor Adam Bates
Fall 2018

CS 563 - Advanced
Computer Security:

Foundations II

CS423: Operating Systems Design

Administrative

2

Learning Objectives:
• Explore how the security of Multics failed in practice
• Understand SCOMP and contrast its features to other

operating systems (past and present)

Announcements:
• E-Ink tablets approved for class use
• Reaction paper was due today (and all classes)
• Feedback for reaction papers soon

Reminder : P lease put away
(backlit) devices at the start of class

2

Security & Privacy Research at Illinois (SPRAI)

Today

3

was multics secure?

Security & Privacy Research at Illinois (SPRAI) 4

• 1964: Multics project conceived as a collaboration between
MIT, General Electric, Bell Labs

• 1965: 6 papers on Multics are published at the Fall Joint
Computer Conference (we read one of them).

• 1965: Early versions of Multics launch

• 1969: MIT’s Multics deployment made publicly available to
paying customers; hundreds of accounts created.

• 1970: Second Multics deployment commissioned by Air Force
at the Rome Air Development Center (RADC).

• 1972: Karger and Schell begin vulnerability analysis, finalize this
report in 1974.

Multics: Ten Years in…

Security & Privacy Research at Illinois (SPRAI)

Vulnerability Analysis

5

• Evaluation of Multics system security 1972-1973

• Roger Schell and Paul Karger

• Schell: security kernel architecture, GEMSOS; architect of
Orange Book

• Karger: capability systems, covert channels, virtual
machine monitors

• Criteria: Multics is “securable” (1.3.3)

• Based on security descriptor mediation

• Ring protection

Security & Privacy Research at Illinois (SPRAI)

Vulnerability Analysis

6

• Criteria details

• Look for Multics vulnerabilities

• Is reference monitor practical for Multics?

• Identify necessary security enhancements

• Determine scope of a certification effort

• Logistics

• Used MIT and RADC deployments

• Honeywell 645 running a Multics system (old HW)

• Limited Time: find one vulnerability per area, “not exhaustive or
systematic

Security & Privacy Research at Illinois (SPRAI)

Results Overview

7

• Design is sound, implementation is ad hoc

• One or more vulnerabilities uncovered at each of 3 layers:

1. hardware

2. software

3. procedure

• Vulnerabilities discovered at RADC, weaponized and validated
against the MIT deployment.

Security & Privacy Research at Illinois (SPRAI)

1. Hardware Vulnerability

8

• Hypothesis: Hardware failures violate the assumptions that underpin the
security model, could violate reference monitor concept.

• Methodology:

• Run the system for a long time

• Each minute, invoke subverter to perform 1 of 22 probes to detect
component failures.

• Results

• Found one undocumented instruction discovered (not security critical?)

• Indirect Addressing vulnerability — passing an argument that includes a
reference to a second address (i.e., payload) bypasses access check on
second address

• Violates which Reference Monitor guarantee?

Security & Privacy Research at Illinois (SPRAI)

1. Hardware Vulnerability

9

How to attack?

1. Execute instruction with R+E access in 1st segment

2. Object instruction in word 0 of 2nd segment with R
permission

3. Word for reading or writing in a third segment

4. (Third segment must already be in the page table)

Result: access checks for third segment are ignored

Root Cause: How was the error introduced?

Motivate need for correctness to be verified

Field modification by MIT personnel… why?

Security & Privacy Research at Illinois (SPRAI)

Origin of Vulnerability

• Early Multics did not have hardware-support for
protection rings; simulated in SW instead.

“Solutions??”

• Workaround for ring-crossing — create a
“gatekeeper” that validates user-supplied
arguments

• What if we forget to implement a handler for a
certain argument type?

2. Software Vulnerability

10

[Insufficient Argument Validation]

Result: No validation for second referent of argument pointers that containing an
IDC* modifier.

How to attack? Point second reference to an address only writable by ring 0!

The fix was ad hoc, patching IDC’s but not the broader issue of input validation.
* “Increment Address, Decrement Tally, and Continue”

Security & Privacy Research at Illinois (SPRAI)

2. Software Vulnerability

11

Origin of Vulnerability

• Multics ran all privileged code with ring 0 permission

• This requires a trap to ring 0

• Expensive, as some privileged operations occur frequently (page faults)

“Solution??”

• Handle a page fault without a transition

• Justification: It has a restricted interface

• But inputs not checked!!

[Master Mode Transfer]

Be careful regarding the security impact of performance improvements

Security & Privacy Research at Illinois (SPRAI)

2. Software Vulnerability

12

What did developers do wrong?

• Move the master mode signaler to run in same ring as caller

• Signaler needs access to a privileged register

• Should audit this code (not done)

How to attack?

[Master Mode Transfer]

• Specify 0 to n-1 entry points for master
mode

• Out of bounds – transfers to mxerror

• mxerror believes that a register points to
signaler, but register can be modified by
user (still in user’s ring)

Be careful regarding the security impact of performance improvements

Security & Privacy Research at Illinois (SPRAI)

Origin of Vulnerability

• To reduce the complexity of Ring 0 code, designers locked the CPU register
responsible for pointing to the base of the current stack (sb); i.e., only Master
Mode code could modify sb.

• Simplified code because now sb doubles as a pointer to a valid writable
memory range for fault and interrupt handlers.

• Later, language designers wanted more control over the stack (think
interpretive languages like Java?)

“Solutions??”: Unlock stack base, then audit Ring 0 code to remove any old
assumptions about a locked sb

Hypothesis: The auditors missed a spot!

How to attack? The mxerror routine contained an unaudited assumption of a
locked sb… ultimately leads to arbitrary code execution in Ring 0.

2. Software Vulnerability

13

[Unlocked Stack Base]

Security & Privacy Research at Illinois (SPRAI)

3. Procedural Vulnerability

14

• Procedural Attacks

• Tamper with the configuration of the reference
validation mechanism and its dependencies

• A variety of attacks (many still used)

• Install malicious version of system utility (e.g., Dump, Patch)

• Forge user identities (e.g., sysadmin, security officer)

• Modify password file

• Hide existence of malware

• Erase audit trails

Security & Privacy Research at Illinois (SPRAI)

Final Kernel Report

15

• Resultant system: two major problems (1974)

• Complex: 54K LOC of code touched by hundreds of
programmers

• Compare to today’s systems… ugh.

• Security mechanisms were ad hoc

• Multiple mechanisms, some overlapping semantics

• Security kernel design is possible

• Tackle later

Security & Privacy Research at Illinois (SPRAI)

What did Multics do right?

16

• No buffer overflows: choice of language made a difference here

• Hardware support through execution bits to ensure data can’t
be directly executed

• Segmented virtual addresses

• Size: 628K for ring 0 supervisor*

• Compare to SELinux example policy alone (1767K)

• Security auditing (though could be bypassed)

• How to better assure the integrity of audits and collected
data?

• Motivates recent work in securing data provenance

Security & Privacy Research at Illinois (SPRAI)

Security Kernels

17

• Goals

1. Implement a specific security policy

2. Define a verifiable protection behavior of the
system as a whole

3. Must be shown to be faithful to the security
model’s design

• Recommended reading:

• IEEE Computer, 16(7), July 1983  
(can find in IEEE Xplore)

Security & Privacy Research at Illinois (SPRAI)

SCOMP

18

Honeywell’s Secure Communications Processor (SCOMP)

Security & Privacy Research at Illinois (SPRAI)

SCOMP

19

Like Multics…

• Access is control via segments

• Memory segments and I/O segments

• Files are defined at a higher level

• Security Goals

• Secrecy: MLS

• Integrity: Ring brackets

Security & Privacy Research at Illinois (SPRAI)

SCOMP

20

Unlike Multics…

• Mediation on Segments

• Although all access control and rings are implemented in
hardware

• Formal verification

• Verify that a formal model enforces the MLS policy

• Trusted software outside the kernel is verified using a
procedural specification

• Separate kernel from system API functions

• In different rings (e.g., for file access)

Security & Privacy Research at Illinois (SPRAI)

SCOMP

21

Security & Privacy Research at Illinois (SPRAI)

SCOMP Drivers

22

• I/O Device Drivers in Scomp can be run in user-space
• Why can’t we do that in a normal OS?
• How can we do that in Scomp?

Security & Privacy Research at Illinois (SPRAI)

SCOMP vs. LSM

23

SCOMP: Linux Security Modules:

LSM mediation occurs in software, not hardware. Affect on completeness?

Security & Privacy Research at Illinois (SPRAI)

SCOMP OS

24

• Whole thing is called Scomp Trusted Operating Program (STOP)

• Lives on in BEA Systems XTS-400

• Security Kernel in ring 0

• Provides limited basic functionality: “memory management,
process scheduling, interrupt management, auditing, and
reference monitoring functions”

• In 10K lines (!!!) of Pascal (!!!)

• Ring transitions controlled by 38 gates (APIs)

• Can malicious user escalate privilege using gates?
No! The kernel doesn’t even need to validate user arguments!

Security & Privacy Research at Illinois (SPRAI)

SCOMP Trusted Software

25

• Officially part of STOP

• But runs outside ring 0

• Software trusted with system security goals

• Like process loader

• System policy management and use

• Such as authentication services

• 23 such processes, consisting of 11K lines of C code

• All interaction requires a trusted path

• How does MLS inform the structure of the hierarchical file system?

Security & Privacy Research at Illinois (SPRAI)

SCOMP Kernel Interface

26

• Like a system call interface for user processes

• Trusted operations on user-level objects (e.g., files, processes,
and I/O)

• Still trusted not to violate MLS requirements

• Is accessible via a SKIP library

• But that library runs in user space (ring 3)

Security & Privacy Research at Illinois (SPRAI)

SCOMP Evaluation

27

• Complete Mediation: Correct?

• In hardware

• In Trusted programs?

• Complete Mediation: Comprehensive?

• At segment level

• For files?

• Complete Mediation: Verified?

• Hardware; Trusted programs? Mail guards?

Security & Privacy Research at Illinois (SPRAI)

SCOMP Evaluation

28

• Tamperproof: Reference Monitor?

• In hardware, in kernel, in guard

• Tamperproof: TCB?

• TCB is well-defined in rings, and protected by gates

• Verify: Code?

• Performed verification on implementation using semi-automated
methods

• Led to assurance criteria and approach

• Verify: Policy?

• MLS is security goal; Integrity is more difficult

Security & Privacy Research at Illinois (SPRAI) 29

Why don’t we all use SCOMP-based systems now?

Security & Privacy Research at Illinois (SPRAI)

Foundations Topic: Looking Forward

30

• “Where does the quest for a security kernel pick-up after
SCOMP??”

• e.g., GEMSOS (the SCOMP of x86 architectures),

• “What other primitives have been proposed for OS security?”

• a.k.a. “What DIDN’T Multics do first?”

• e.g., Capability systems like ICAP, Capsicum,

• e.g., Virtual Machine Monitors like VAX VMM

• e.g., DIFC systems like Flume, Asbestos, HiStar

• “Where is the security kernel today?”

• e.g., LSM, Subdomains, SELinux, seL4, Nested Kernels

Security & Privacy Research at Illinois (SPRAI)

Foundations Topic: Looking Forward

31

• “Why should I go out of my way to read old esoteric papers?”

• Answer: Combat the evils of Technological Manifest Destiny!!

Understanding classical security concepts will make your research better.

 Without foundational knowledge, you’ll spend your career just following shallow trends.

