CS 563
Mobile OS & Device Security

Advanced Computer Security
CS 563

University of Illinois at Urbana-Champaign

Presentation by: Guliz Seray Tuncay

Administrative

Announcements:

« Reaction paper was due today (and all classes)
« Feedback for reaction papers soon

« "Preference Proposal” Homework due 9/24

Learning Objectives:

« Background of mobile OSes

« Study the security fundamentals of Android OS
« Discuss privilege escalation and web attacks

Reminder: Please put away (backlit)
devices at the start of class

Mobile Phone Evolution

e Basic Phone

* Phone with SIM Application Toolkit (STK)
— Tiny programs stored on GSM SIM cards
— Typically enable value-added features

* Feature Phones
— Extra features on the phone firmware itself
— Typically provided by the phone manufacturer

* Smart Phones
— APl available that enables third-party apps

Growth of Mobile OS

Worldwide Smartphone OS Market Share
(Share in Unit Shipments)
100%
90%
80%
0%
G0%
S0%
40%
30%
20%
10%

0%
5 a 2

& & fa

P P

Source: IDC, May 2017

Mobiles, Tablets, PC sales

Worldwide Device Shipments by Device Type, 2016-2019 (Millions of Units)

Device Type 2016 2017 2018 2019
Lrsggggi; PCs (Desk-Based and 520 204 193 187
Ultramobiles (Premium) 50 59 70 80
Total PC Market 270 262 264 267
Ultramobiles (Basic and Utility) [169 160 159 156
Computing Device Market 439 423 423 423
Mobile Phones 1,893 1,855 1,903 1,924

Source: Gartner (January 2018)

PC versus Smart Phones

* Why worry specifically about mobile OS security?
— Smart phones are computing platforms similar to
desktop OS: why not use the same principles?

 PCversus Smart Phones
— Users: Root privileges typically not given to user
— Persistent Personal Data

* Input is cumbersome, so credentials are frequently stored
— Battery performance is an issue

* Implementing some security features may drain battery

— Network usage can be expensive

PC versus Smart Phones (cont’d)

* Unique features in Smart Phones

— Location Data
* GPS and Wifi-based tracking

— Premium SMS Messages (expensive)
— Making and recording phone calls

— Logs of previously sent SMS

— Different authentication mechanisms

* Fingerprint reader (available across platform)
e Face Unlock (Android 5.0)
* Trusted Places, Devices, Voice (Android 5.0)

— Specific markets for mobile apps

Mobile OS Security Frameworks

* Covered
— Android Security Model

* Not Covered
— Apple i0S
— Windows OS
— Blackberry

Android

e Platform outline:

— Linux kernel
— Embedded Web Browser

— SQL-lite database

— Software for secure network communication
* Open SSL, Bouncy Castle crypto APl and Java library

— Java platform for running applications
— C language infrastructure
— Also: video APIs, Bluetooth, vibrate phone, etc.

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manager Providers System Manager

Package Telephony Resource Location XMPP

Manager Manager Manager Manager Service

LIBRARIES ANDROID RUNTIME

Surface Media

. Core
Lit
Manager Framework —

Libraries

OpenGL|ES FreeType WebKit ART (> V4_4)

libc

LINUX KERNEL

Display Bluetooth Flash Memory Binder (IPC)

Driver Driver Driver Driver

USB WiFi

Audio Power
Driver

Driver Drivers Management

p- -
l!l Android Market (Google Play Store)

* Self-signed apps
 Open market
— Not rigorously reviewed by Google (unlike Apple)

— Bad applications may show up on market

— Malware writers can get code onto platform: Self-
signed applications are possible

* shifts focus from remote exploit to privilege escalation

p- N
l!l Android Application Structure

* 4 components
— Activity — one-user task
e E.g., scroll through your inbox
— Service — Java daemon that runs in background
* E.g., application that streams an mp3
— Broadcast receiver
* “mailboxes” for messages from other applications

— Content provider
e Store and share data using a relational database interface

* Activating components

— Via Intents

lﬁlAd id Intent
ndroid Intents

* Message between components in same or different app

* Intent is a bundle of information, e.g.,
— action to be taken
— data to acton
— category of component to handle the intent
— instructions on how to launch a target activity

* Routing can be
— Explicit: delivered only to a specific receiver

— Implicit: all components that have registered to
receive that action will get the message

P9
l‘l Android Manifest File

<?xml version= encoding=
o if lns: =
* Declarations ackage'c
<uses-permission
:name=

— Components e

efe, o <applicatio|:1requ”w: />
— Component capabilities alagacor
:label=
* Intent filters supportsRtl~
<activity
* Permissions etc. . ?“1
. <lnti;£;iénter> —
— App requirements TS
</activity>

H H <service :name= rexported= />
¢ Perm|SS|OnS </application>

</manifest>

e Sensors etc.

lﬁlA droid Permissi
ndroid Permissions

 Example of permissions provided by Android
— “android.permission.INTERNET”
— “android.permission.READ_EXTERNAL STORAGE”
— “android.permission.SEND SMS”

* Protection levels

— Dangerous, normal, signature

* Also possible to define custom permissions

— To enable or disable other apps to call their features

* Used to be granted at installation but...

i

App permissions
— ' Storage

— d Network communication

Phone calls

T U
See all :

* Runtime permissions

— Dangerous permissions granted at
runtime

— Normal and signature permissions
still granted at installation

— Only valid for modern apps (API
>= 23), permissions are still install
time for legacy app

— Permissions granted based on a
permission group basis

— CALENDAR READ_CALENDAR
@Q\{ MY LITTLE PONY

N

Version 3.4.0i may request access to

e WRITE_CALENDAR
CAMERA « CAMERA
CONTACTS o READ_CONTACTS

Contacts o WRITE_CONTACTS

« find accounts on the device e GET_ACCOUNTS

Location LOCATION e ACCESS_FINE_LOCATION

* access approximate location (network-
based)

|B™ Storage

+ modify or delete the contents of your USB

Q: Which permission model do you prefer: Installation-Time vs Ask-
On-First-Use vs something else?
As a user? Complications for developers?

e ACCESS_COARSE_LOCATION
MICROPHONE « RECORD_AUDIO
PHONE o READ_PHONE_STATE

SENSORS BODY_SENSORS
SMS e« SEND_SMS

« view network connections
+ view Wi-Fi connections

o RECEIVE_SMS

You can disable access for these permissions in Settings.
Updates to MY LITTLE PONY may automatically add additional

capabilities within each group. Learn more » READ_SMS

« RECEIVE_WAP_PUSH
« RECEIVE_MMS

STORAGE o« READ_EXTERNAL_STORAGE
o WRITE_EXTERNAL_STORAGE

* Multi-user Linux operating system

* Each application normally runs as a different user
— Each app has its own VM
— Traditional linux-based permissions apply (DAC)

* Applications announce permission requirement

— Create a whitelist model — user grants access

— |CC reference monitor checks permissions (MAC)

App 1 App 2

Dalvik / ART Dalvik / ART

Linux Process Linux Process

l‘l Inter-component Communication

* Flexibility and reusability important for Android
— Enable apps to work together to accomplish things

* Apps communicate through application
framework

— Intents based on Binder IPC

— Implemented in kernel as a driver

Intent

Android Middleware

Binder IPC

File System, Sockets

Q: Heavily relying on IPC (Android) vs completely standalone apps (iOS, kind of)?
Which one do you think is better?

P -
l'l Android malware

New Android malware samples
(peryear)

3,246,284
3,002,482

2,888 vafdll

1,548,129
1,192,035

214,327

3,809
2011 2012 2013 2014 2015 2016 2017

in2017. 744,065 of these were discovered in the fourth quarter.

850 million Android devices still at ri o ooz

hijack by Stagefright bug Google Is Fighting A Massive

© o e oo TR Android Malware Outbreak - -
Up To 21 Million Victims

Thomas Brewster Forbes Staff
Security
I cover crime, privacy and security in digital and physical forms

_ n =

The Rise of Mac

Stagefright malware is back!'’
Android bug in history' return
third time and could infect a E
phones

. Stagefright bug lets attackers take control of older Android h
- Notorious bug is back for a third time, security research firm
. Israel-based NorthBit security researchers seem to show the

« It only affects handsets running software older than Android
being told to upgrade, and install anti-malware apps

By SARAH GRIFFITHS FOR MAILONLINE
PUBLISHED: 06:59 EDT, 21 March 2016 | UPDATED: 19:17 EDT, 21 March 20

G DATA analysts are counting over 3 million new Android malware samples in 2017. 744,065 of these were discoven

Attacks on Android

-

~

Privilege Escalation Attacks on Android

Q/Veb Attacks on Android

J

Phishing
Clickjacking
Side-channel etc.

Privilege Escalation Attacks on Android

* Gaining elevated access to resources that are
normally protected from an application

* 2 major classes

— confused deputy attacks: leveraging unprotected
interfaces of benign applications

-[Permission re-delegation attacks]

— collusion attacks: malicious applications merge their
permissions

* Other interesting ones: mobile OS update etc.

Permission Re-delegation Attacks

confused
deputy

Wi-Fi
Manager ool
J WISl Dermission
requested in
App
advance
Access
Wi-Fi?
Permission

Attack App not requested

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Why could this happen?

* App w/ permissions exposes a public interface

— The “deputy” app may accidentally expose privileged
functionality...
— ... or intentionally expose it, but the attacker invokes
it in a surprising context
* Example: broadcast receivers in Android
— ... or intentionally expose it, attempt to reduce the
invoker’s authority, but do it incorrectly

* Dynamic (programmatic) permission checks

— checkCallingPermission(), checkCallingOrSelfPermission() etc.

[FeEltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Public Interfaces in Android Manifest

* Via exported tag

— <service android:name=“WiFiService”
android:exported="“true”> </service>

 Via intent filters

— <receiver android:name=“WiFiBroadcastReceiver”>
<intent-filter>
<action android:name=“android.intent.action.WIFI” />
</intent-filter>
</receiver>

Component is still public if
android:exported=“false” and

It has an intent filter!

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Public Interfaces in Android

Manifest

\}
5\ Questions Jobs Documentation Tags Users Q_ Search...
&, | have two similar applications (one free, one paid).
5 An activity is defined with exported="false"
4

<activity
android:name=".MyActivity"
android:exported="false"
android:noHistory="true" >
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="vnd.android.cursor.item/vnd.mine" />
</intent-filter>
</activity>

When | call startActivity with the appropriate implicit intent from the free app, the activity picker
appears.

| don't understand why the activity from the paid app appears, since itis exported="false"

| suppose | can add an intent filter based on the URL, but my question is: why does the activity
from the other app appear when the doc reads

Public Interfaces in Android

Manifest

If Your Activity Has an <intent-filter>, Export It

Slightly less than two years ago, | pointed out a problem in Android where an activity that has an <intent-
filter>, but is marked as not being exported (android:exported="false"), screws up the chooser. The
chooser ignores the exported flag and offers up the non-exported activity to the user... then promptly
crashes if the user actually chooses it.

Dianne Hackborn specifically called this out as being a bug in the app:

would generally consider this a bug in the app - if you have an activity that you aren’t allowing
other apps to launch, why the heck are you publishing an intent filter that they will match to

try to launch?

~

Ghat would be nice, of course, is if Google paid attention to its own advice.
The AOSP Music app has five activities that violate this rule:

e VideoBrowserActivity
e ArtistAlbumBrowserActivity

\ e AlbumBrowserActivity)

Prevalence of Public Interfaces

* Examine 872 apps

e 320 of these (37%) have permissions and at least
one type of public component

* 9% of all apps perform dynamic permission
checks

— But typically to protect content providers and not
services or broadcast receivers

— Only 1 application in a random set w/ 50 apps does
so to protect a service or broadcast receiver

* 11 of 16 system applications are at risk

[FeEltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Implementing the attack

* Constructing the attack

— Build call graph of the app

— Search the call graph to find paths from public entry
points to protected system APIs

* Likely to miss some viable paths
— Cannot detect flow through callbacks

* Only construct attacks on API calls for verifiable
side effects

[FeEltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Case Studies

* Build attacks for 5 system apps

— Settings: phone’s primary control panel

e Settings Ul sends intent to Settings receiver on user’s button
clicks

e Unprivileged app can also send intents to this broadcast receiver
* Requires CHANGE_WIFI_STATE, BLUETOOTH_ADMIN,
ACCESS_FINE_LOCATION permissions

— DeskClock: time and alarm functionality

* Public service that accepts directions to play alarms

e Send intent to indefinitely vibrate the phone (prevent phone
from sleeping)

* Requires VIBRATE and WAKE_LOCK permissions

[FeEltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Defense

(e [ER ool (o)W RigeI0aR We need runtime independence and
— Stack inspection ability of reduction of privileges!

* When a privileged API call is made, system checks within a
runtime whether the call stack includes any unprivileged
application. Dependent on runtime.

— History-based access control (HBAC)

* Reduces the permissions of trusted code after interactions
with untrusted code. Relies on runtime mechanisms.

— Mandatory access control (MAC)
* Central flow control by OS enforced fixed info. flow policy
* Apps cannot be strictly ordered in terms of integrity level

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

IPC Inspection

* When an app receives a message from another
app, reduce the privileges of recipient to the
intersection of recipient’s and requester’s
permissions
— Implemented in the OS, not in the runtime.

— Maintain a list of current permissions for each app
— Build privilege reduction into system’s IPC mechanism

— Allow apps to accept or reject messages

* They can register a set of acceptable requesters

* Requesters can be identified individually (domain) or based
on their permissions

[FeEltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

IPC Inspection Implementation

 There can be multiple requesters

— Create new app instances for the deputy if privilege
reduction is necessary

— Instance reuse
* Primary instance can be reused in an install-time system

* Not possible with time-of-use systems since deputy could
dynamically request permissions and it isn’t clear which
requester is responsible for the permission prompt

* Singleton deputy apps will have their permissions
repeatedly reduced until app exists

Attacks on Android

* Privilege Escalation Attacks on Android
* Web Attacks on Android

Embedded Web Browsers

COQUWdnm 1244

* Web container for showing
web pages within app
context

- AN » >00% of apps in Google
US election: Trump will Play StOre use WebV|eW

accept result if | win'
ting US Election 2016

S —— * Interesting use cases:

has sald he will accept the results of the us
election “if | win

L] L]
He added tha would accept a “clear” result - but — D I y g d
ed the right to lf aller Y ’:UE:-_:[ru;‘.rrage' r.e'l'i'.ul'. IS p a I n a S
He appe at a rally [vare, Ohic ; aking for

ine th hi ad nl debate n — Reuse of web code

“ — Hybrid frameworks

WebView API

 Web settings e HTML5S API

— setJavaScriptEnabled() — Geolocation, getUserMedia
— setAllowFileAccess() — App should have permissions
* Navigation * Loading content
— shouldOverrideUrlLoading() — loadUrl() etc.
* App code access — “http://”, “https://”, “file://”,

“javascript:”
—_— JavaSCrIpt interfaCes—mWebView.adeavaScriptInterface(new MyJSInterface(),

"InjectedObject”);
/7. ..

— JavaSCript event handlers public class MyJSInterface {

@JavaScriptInterface

public void myExposedMethod() {
® OnJSAlert(), OnJSPrompt(), // do some sensitive activity
. 3
OnJSCOHfIrm() public void myHiddenMethod() {
// JavaScript cannot access me, do some other activity
3
}

Prevalence of WebView API

WebView

JavaScript Enabled
JavaScript Interfaces
Event Handler (prompt)
Event Handler (alert)
Event Handler (confirm)
HTMLS Geolocation API

HTML5 Media API

0 25 50 75 100

Percentage of apps in dataset

Web Attacks on Android

* Web to app attacks

Victim Android

Native Java
Code

—[Excess authorization] WebView
. _ D e
* Web domains abuse app/device resources Java

| o u-Lal Obiects
— File-based cross-zone scripting

* loadUrl(“file://....ntml")

* File system access by third party domains

* App to web attacks i Malicious Ancrid
Application %
WebView

— JavaScript injection

Malicious |
Native
Java Code

— Event sniffing and hijacking

* doUpdateVisitedHistory, onFormResubmission

Luo, Tongbo, et al. "Attacks on WebView in the Android system." Proceedings of the 27th Annual Computer Security Applications Conference. ACM, 2011

App-Web Code Interaction

‘WebView o)
\. V,
Event JS
9 _ handlers interfaces
S0
- p
A
\App 1 _App code 4 Java)

|
+Y IN| —
i A
- "{ — :4 -'l‘l\. ’ ." - " \ ‘
..2 Y C

Threat Model for Excess

Authorization Navigate to
e other sites!

WebV|ew A Expected to
be app’s own

Have iframes! domain!

<iframe src= ewl com>

[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016"

Defense: Draco

* Fine grained and origin
based access control for
WebView

* Protect all parts of all three
access channels for all types
of apps uniformly

No changes!

<4
.

loadUrl(“policyrule:...”)

* 2 main components
— Draconian Policy Language
— Draco Runtime System

[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016"

Draconian Policy Language

web origin JS interface HTML5 API event handler user system

Policy rule example:

https://www.caremark.com | WebViewJavascriptinterface decisionpoint<system>

[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016" 53

Draco Architecture I

1867

Chromium library

Policy Manager

Chromium
Enforcement HTMLs | US Event

Module Interface Handler |ibrary

Parsing Information Static Analysis
Module Unit Module

Draconian Policy Policy

policies Parser Map Decompiler

App Permission Permission ‘ .
developer Parser ’ Map Static
analyzer

loadUrl
(“policyrule:...

R i dats A et 2 S P

method list permissions decisionpoint

[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016" 54

Mobile & Device Security: Looking

Forward

 Where to look for literature: “Big 4” security
conferences (IEEE S&P a.k.a. Oakland, USENIX Security,
CCS, NDSS), WiSec, SPSM workshop (now merged with
WiSec), MobiSys

* Hot topics in mobile & device security (not exhaustive):
— Android permissions
— Mobile advertising & third-party libraries
— Side-channel attacks on mobile devices
— loT security

