
CS 563
Mobile OS & Device Security

Advanced Computer Security
CS 563

University of Illinois at Urbana-Champaign
Presentation by: Güliz Seray Tuncay

Administrative

2

Announcements:
• Reaction paper was due today (and all classes)
• Feedback for reaction papers soon
• “Preference Proposal” Homework due 9/24

Learning Objectives:
• Background of mobile OSes
• Study the security fundamentals of Android OS
• Discuss privilege escalation and web attacks

Reminder: Please put away (backlit)
devices at the start of class

• Basic Phone
• Phone with SIM Application Toolkit (STK)
– Tiny programs stored on GSM SIM cards
– Typically enable value-added features

• Feature Phones
– Extra features on the phone firmware itself
– Typically provided by the phone manufacturer

• Smart Phones
– API available that enables third-party apps

Mobile Phone Evolution

3

Growth of Mobile OS

4

Mobiles, Tablets, PC sales

6

• Why worry specifically about mobile OS security?
– Smart phones are computing platforms similar to

desktop OS: why not use the same principles?
• PC versus Smart Phones
– Users: Root privileges typically not given to user
– Persistent Personal Data
• Input is cumbersome, so credentials are frequently stored

– Battery performance is an issue
• Implementing some security features may drain battery

– Network usage can be expensive

PC versus Smart Phones

7

• Unique features in Smart Phones
– Location Data

• GPS and Wifi-based tracking

– Premium SMS Messages (expensive)
– Making and recording phone calls
– Logs of previously sent SMS
– Different authentication mechanisms

• Fingerprint reader (available across platform)
• Face Unlock (Android 5.0)
• Trusted Places, Devices, Voice (Android 5.0)

– Specific markets for mobile apps

PC versus Smart Phones (cont’d)

8

9

Mobile OS Security Frameworks

• Covered
– Android Security Model

• Not Covered
– Apple iOS
– Windows OS
– Blackberry

10

Android

11

Android

• Platform outline:

– Linux kernel

– Embedded Web Browser

– SQL-lite database

– Software for secure network communication

• Open SSL, Bouncy Castle crypto API and Java library

– Java platform for running applications

– C language infrastructure

– Also: video APIs, Bluetooth, vibrate phone, etc.

12

ART (> v4.4)

Android Market (Google Play Store)

• Self-signed apps
• Open market
– Not rigorously reviewed by Google (unlike Apple)
– Bad applications may show up on market
– Malware writers can get code onto platform: Self-

signed applications are possible
• shifts focus from remote exploit to privilege escalation

14

Android Application Structure

• 4 components
– Activity – one-user task

• E.g., scroll through your inbox
– Service – Java daemon that runs in background

• E.g., application that streams an mp3
– Broadcast receiver

• “mailboxes” for messages from other applications
– Content provider

• Store and share data using a relational database interface

• Activating components
– Via Intents

15

• Message between components in same or different app
• Intent is a bundle of information, e.g.,
– action to be taken
– data to act on
– category of component to handle the intent
– instructions on how to launch a target activity

• Routing can be
– Explicit: delivered only to a specific receiver
– Implicit: all components that have registered to

receive that action will get the message

Android Intents

16

• Declarations
– Components
– Component capabilities
• Intent filters
• Permissions etc.

– App requirements
• Permissions
• Sensors etc.

Android Manifest File

17

• Example of permissions provided by Android

– “android.permission.INTERNET”

– “android.permission.READ_EXTERNAL_STORAGE”

– “android.permission.SEND_SMS”

• Protection levels

– Dangerous, normal, signature

• Also possible to define custom permissions

– To enable or disable other apps to call their features

• Used to be granted at installation but…

Android Permissions

18

• Example of permissions provided by Android

– “android.permission.INTERNET”

– “android.permission.READ_EXTERNAL_STORAGE”

– “android.permission.SEND_SMS”

• Protection levels

– Dangerous, normal, signature

• Also possible to define custom permissions

– To enable or disable other apps to call their features

• Used to be granted at installation but…

Android Permissions

19

• Runtime permissions
– Dangerous permissions granted at

runtime
– Normal and signature permissions

still granted at installation
– Only valid for modern apps (API

>= 23), permissions are still install
time for legacy app

– Permissions granted based on a
permission group basis

Android Runtime Permissions

20

Android Permission Groups

21

• All dangerous
permissions in a
group will be
granted!

Q: Which permission model do you prefer: Installation-Time vs Ask-
On-First-Use vs something else?

As a user? Complications for developers?

Isolation

• Multi-user Linux operating system
• Each application normally runs as a different user

– Each app has its own VM
– Traditional linux-based permissions apply (DAC)

• Applications announce permission requirement
– Create a whitelist model – user grants access
– ICC reference monitor checks permissions (MAC)

23

Linux Process
Dalvik / ART

App 1

Linux Process
Dalvik / ART

App 2

• Flexibility and reusability important for Android
– Enable apps to work together to accomplish things

• Apps communicate through application
framework
– Intents based on Binder IPC
– Implemented in kernel as a driver

Inter-component Communication

25

Binder IPC & Permission Enforcement

26

App 1

Android Middleware

Binder IPC

Linux Kernel

App 2
A1C1 A2C1

DAC

MAC
ICC Reference Monitor

Intent

Fi
le

 S
ys

te
m

, S
oc

ke
ts

uids of caller and callee

Q: Heavily relying on IPC (Android) vs completely standalone apps (iOS, kind of)?
Which one do you think is better?

27

Android malware

29

Android malware

30

• Privilege Escalation Attacks on Android
• Web Attacks on Android
• Phishing
• Clickjacking
• Side-channel etc.

Attacks on Android

31

• Gaining elevated access to resources that are
normally protected from an application

• 2 major classes
– confused deputy attacks: leveraging unprotected

interfaces of benign applications
• Permission re-delegation attacks

– collusion attacks: malicious applications merge their
permissions

• Other interesting ones: mobile OS update etc.

Privilege Escalation Attacks on Android

32

Permission Re-delegation Attacks

33

Wi-Fi Control
App

Attack App

Wi-Fi
Manager

Access Wi-Fi? Permission
requested in

advance

Permission
not requested

Access Wi-Fi?

Access
Wi-Fi?

confused
deputy

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

• App w/ permissions exposes a public interface
– The “deputy” app may accidentally expose privileged

functionality…
– … or intentionally expose it, but the attacker invokes

it in a surprising context
• Example: broadcast receivers in Android

– … or intentionally expose it, attempt to reduce the
invoker’s authority, but do it incorrectly

• Dynamic (programmatic) permission checks
– checkCallingPermission(), checkCallingOrSelfPermission() etc.

Why could this happen?

34[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

• Via exported tag
– <service android:name=“.WiFiService”

android:exported=“true”> </service>

• Via intent filters
– <receiver android:name=“.WiFiBroadcastReceiver”>

<intent-filter>
<action android:name=“android.intent.action.WIFI”/>
</intent-filter>
</receiver>

Public Interfaces in Android Manifest

35

Component is still public if
android:exported=“false” and

It has an intent filter!

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Public Interfaces in Android
Manifest

36

Public Interfaces in Android
Manifest

37

• Examine 872 apps
• 320 of these (37%) have permissions and at least

one type of public component
• 9% of all apps perform dynamic permission

checks
– But typically to protect content providers and not

services or broadcast receivers
– Only 1 application in a random set w/ 50 apps does

so to protect a service or broadcast receiver

• 11 of 16 system applications are at risk

Prevalence of Public Interfaces

38[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

• Constructing the attack
– Build call graph of the app
– Search the call graph to find paths from public entry

points to protected system APIs
• Likely to miss some viable paths

– Cannot detect flow through callbacks
• Only construct attacks on API calls for verifiable

side effects

Implementing the attack

39[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

• Build attacks for 5 system apps
– Settings: phone’s primary control panel

• Settings UI sends intent to Settings receiver on user’s button
clicks

• Unprivileged app can also send intents to this broadcast receiver
• Requires CHANGE_WIFI_STATE, BLUETOOTH_ADMIN,

ACCESS_FINE_LOCATION permissions

– DeskClock: time and alarm functionality
• Public service that accepts directions to play alarms
• Send intent to indefinitely vibrate the phone (prevent phone

from sleeping)
• Requires VIBRATE and WAKE_LOCK permissions

Case Studies

40[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

• Ideas borrowed from:
– Stack inspection

• When a privileged API call is made, system checks within a
runtime whether the call stack includes any unprivileged
application. Dependent on runtime.

– History-based access control (HBAC)
• Reduces the permissions of trusted code after interactions

with untrusted code. Relies on runtime mechanisms.

– Mandatory access control (MAC)
• Central flow control by OS enforced fixed info. flow policy
• Apps cannot be strictly ordered in terms of integrity level

Defense

41

We need runtime independence and
ability of reduction of privileges!

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

• When an app receives a message from another
app, reduce the privileges of recipient to the
intersection of recipient’s and requester’s
permissions
– Implemented in the OS, not in the runtime.
– Maintain a list of current permissions for each app
– Build privilege reduction into system’s IPC mechanism
– Allow apps to accept or reject messages

• They can register a set of acceptable requesters
• Requesters can be identified individually (domain) or based

on their permissions

IPC Inspection

42[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

• There can be multiple requesters
– Create new app instances for the deputy if privilege

reduction is necessary
– Instance reuse
• Primary instance can be reused in an install-time system
• Not possible with time-of-use systems since deputy could

dynamically request permissions and it isn’t clear which
requester is responsible for the permission prompt

• Singleton deputy apps will have their permissions
repeatedly reduced until app exists

IPC Inspection Implementation

43

44

• Privilege Escalation Attacks on Android
• Web Attacks on Android

Attacks on Android

45

• Web container for showing
web pages within app
context

• >90% of apps in Google
Play Store use WebView

• Interesting use cases:
– Displaying ads
– Reuse of web code
– Hybrid frameworks

Embedded Web Browsers

46

• Web settings
– setJavaScriptEnabled()
– setAllowFileAccess()

• Navigation
– shouldOverrideUrlLoading()

• App code access
– JavaScript interfaces
– JavaScript event handlers

• onJsAlert(), onJsPrompt(),
onJsConfirm()

WebView API

47

• HTML5 API
– GeoLocation, getUserMedia
– App should have permissions

• Loading content
– loadUrl() etc.
– “http://”, “https://”, “file://”,

“javascript:”

Prevalence of WebView API

48

• Web to app attacks
– Excess authorization
• Web domains abuse app/device resources

– File-based cross-zone scripting
• loadUrl(“file://….html”)
• File system access by third party domains

• App to web attacks
– JavaScript injection
• loadUrl(“javascript:….”)

– Event sniffing and hijacking
• doUpdateVisitedHistory, onFormResubmission

Web Attacks on Android

49Luo, Tongbo, et al. "Attacks on WebView in the Android system." Proceedings of the 27th Annual Computer Security Applications Conference. ACM, 2011

App-Web Code Interaction

50

JS
interfaces

Event
handlers

H
TM

L5

AP
I

Threat Model for Excess
Authorization

51

Expected to
be app’s own

domain!Have iframes!

Navigate to
other sites!

[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016"

• Fine grained and origin
based access control for
WebView

• Protect all parts of all three
access channels for all types
of apps uniformly

• 2 main components
– Draconian Policy Language
– Draco Runtime System

Defense: Draco

52[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016"

Draconian Policy Language

53[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016"

subject channel decision point

JS interface event handlerHTML5 APIweb origin system

class name method list permission list method list permission list

permission list

user

Policy rule example:

Draco Architecture

54[TuncayCCS2016] Tuncay, Guliz Seray et al. "Draco: A System for Uniform and Fine-grained Access Control for Web Code on Android. CCS 2016"

Android App

Chromium library

Policy Manager

Parsing
Module

Policy
Parser

Permission
Parser

Information
Unit

Policy
Map

Permission
Map

Android System
WebView
Chromium

library

Static Analysis
Module

Decompiler

Static
analyzer

Draconian
policies

Enforcement
Module

HTML5 JS
Interface

Event
Handler

.apk

App
developer

App
user

subject decisionpointclass name method list permissions

loadUrl
(“policyrule:…”)

• Where to look for literature: “Big 4” security
conferences (IEEE S&P a.k.a. Oakland, USENIX Security,
CCS, NDSS), WiSec, SPSM workshop (now merged with
WiSec), MobiSys

• Hot topics in mobile & device security (not exhaustive):

– Android permissions

– Mobile advertising & third-party libraries

– Side-channel attacks on mobile devices

– IoT security

Mobile & Device Security: Looking
Forward

55

56

