
RAIN: Refinable Attack Investigation
with On-demand Inter-Process

Information Flow Tracking
Y. Ji, S. Lee, E. Downing, et.al.

CCS’17

Presented by: Mohammad A. Noureddine
CS563

Fall 2018

No Shortage of Recent Breaches!

1

Investigating Attacks

•Definition: Whole-system provenance
• “A complete description of agents (users, groups) controlling

activities (processes) interacting with controlled data types during
system execution” 1

•Determine the root cause of a breach
•Determine the impacts of an exploit on the system

21 Bates, Adam M., et al. "Trustworthy Whole-System Provenance for the Linux Kernel." USENIX Security Symposium. 2015.

Provenance Graphs

•Track and Log system Interactions
• Usually system-call level

• From a given point of interest
• Can determine root cause
• Backward traversal

• Can determine impact on the system
• Forward traversal

3

read

read read
read

write

Provenance Graphs: Challenges

4

read

read read
read

write

“Dependence Explosion” Problem

Traditional Approaches

•Tradeoff performance vs graph granularity
• System-call tracing
• Better performance but not enough granularity

•Dynamic Information Flow Tracking (DIFT)
• Fancy name for taint analysis
• Better granularity but worse performance

•DIFT + record and replay
• Performance hit becomes someone else’s problem

5

This Paper

•RAIN: Refinable Attack INvestigation
•Combine best of each approach!
• System-call level graph generation
• Graph pruning
• Record & Replay
• Selective DIFT

6

Good Runtime Performance

Reduce performance hit of DIFT

Improved granularity!

What Can the Attacker Do?

•Kernel: Good
• Kernel and monitoring system form a trusted computing base

(TCB)

•User space: Bad

•No side channels

7

High Level Overview

8

Logging Behavior

• Logging component resides completely in the kernel
• Trusted given the threat model of the paper
• Capture system calls, their arguments, and return values
• read, write, open, send, recv, connect
• Build the same traditional provenance graphs

•Keep logs not only to infer causality
• Need to be able to faithfully replay the system’s execution

9

Record & Replay: Arnold

•Capture non-determinism for later replay
•Goal is to reproduce complete architectural state of a user

process
• Record IPC communications
• Cache data of every file and network I/O

10

•Record non-determinism by instrumenting
pthread in libc
• Enforce determinism when replaying

Story so far

RAIN module

Arnold

Runtime Collection

Provenance
Graphs

Record &
Replay Logs

Still too
expensive for
analysis

11

RAIN module

Arnold

Runtime Collection

Provenance
Graphs

Record &
Replay Logs

Still too
expensive for
analysis

PRUNING I: Triggering Points

•Want to limit the size of the graph to the most interesting
nodes
•Three criterion for starting the analysis
• External signals: tips from other sources, CVEs, responsible

disclosures, etc.
• Security policy: violations to a certain policy are interesting points

for looking into
• Customized comparisons: compare hashes of downloaded files

12

PRUNING II: Reachability Analysis

• Starting from trigger points (points of interest)
• Determine the next set of interesting poinst

• Forward reachability
•Backward reachability
•Point-to-point: Forward & Backward
•Heuristic interference analysis

13

Backward Reachability Analysis

14

Bad socket

D

P2
read

B
write

P1

read

C
P3

E

F

A
send

read
write

mmap

read

Forward Reachability Analysis

15

Bad File

D

P2
read

B
write

P1

read

C
P3

E

F

A
send

read
write

mmap

read

P2P Reachability

16

Bad File

D

P2
read

B
write

P1

read

C
P3

E

F

A
send

read
write

mmap

read

Interference Pruning

•Track read-after-writes using syscall timestamps
• Remove false dependencies

17

P2

D

P2
read

B
write

P1

read

C
P3

E

F

A
send

read
write

mmap

read

read

write

No m em ory
interference

Digression

•High dependence on the structure of the graph
•What about loops?
•Processes that touch system files
• /etc, /var, /sys, …

18

P2

B
write

P1

read

C
P3

E

F

A
send

read
write

mmap

read

writewrite

write

Taint Analysis Primer

•A process level PET scan

19

Intel PIN tools

P1

P2

a.txt

b.txt
Fine-grained
causality

Selective DIFT

•Use the outcomes of the reachability analysis and trigger
points
• Start from interference points

•Refinement for
• downstream causality,
• upstream causality,
• and point to point causality

•Run taint analysis for different processes independently
• Cache results for improved performance

20

DIFT: Upstream Refinement

21

D

P2
read

B
write

P1

read

C
P3

E

F

A
send

read
write

mmap

read

Interference points. Run
taint analysis

Does not influence A.
Drop this path!

Continue down
this path

Interference points. Run
taint analysis

Does not influence C.
Drop this path!

True causality

P2P Refinement

22

Bad File

D

P2
read

B
write

P1

read

C
P3

E

F

A
send

read
write

mmap

read

Story Recap

23

RAIN module

Arnold

Runtime Collection

Provenance
Graphs

Record &
Replay Logs

Replay Engine

Selective DIFT

Fine-grained
graphs

Results: Accuracy

24

“In addition, the point-to-point analysis between the “NetRecon.log” and neighboring hosts
shows the effectiveness of RAIN involving control flow dependency”

“When we took a closer look at the DIFT, we observed that “over-tainting” situation that

occurs during control flow-based propagation which is a know limitation of DIFT”.

Results: Performance Hit

25

Limitations

• Storage overhead

•Over-tainting issue due to control flow dependencies

•Kernel is a point of trust
•What if exploit is in libc but logging is intact?

26

Questions

•Attack that exploits a certain race condition?
• Arnold is having an affair:

“In the presence of data races, the replayed execution may
diverge from the recorded one”1

•Does record and replay as described work with containers?

271 Devecsery, David, et al. "Eidetic Systems." OSDI. Vol. 14. 2014.

