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No Shortage of Recent Breaches!
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Investigating Attacks

•Definition: Whole-system provenance
• “A complete description of agents (users, groups) controlling 

activities (processes) interacting with controlled data types during 
system execution” 1

•Determine the root cause of a breach
•Determine the impacts of an exploit on the system

21 Bates, Adam M., et al. "Trustworthy Whole-System Provenance for the Linux Kernel." USENIX Security Symposium. 2015.



Provenance Graphs

•Track and Log system Interactions
• Usually system-call level

• From a given point of interest
• Can determine root cause
• Backward traversal

• Can determine impact on the system
• Forward traversal
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Provenance Graphs: Challenges
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Traditional Approaches

•Tradeoff performance vs graph granularity
• System-call tracing
• Better performance but not enough granularity

•Dynamic Information Flow Tracking (DIFT)
• Fancy name for taint analysis
• Better granularity but worse performance

•DIFT + record and replay
• Performance hit becomes someone else’s problem
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This Paper

•RAIN: Refinable Attack INvestigation
•Combine best of each approach!
• System-call level graph generation
• Graph pruning
• Record & Replay
• Selective DIFT
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Good Runtime Performance

Reduce performance hit of DIFT

Improved granularity!



What Can the Attacker Do?

•Kernel: Good
• Kernel and monitoring system form a trusted computing base 

(TCB)

•User space: Bad

•No side channels
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High Level Overview
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Logging Behavior

• Logging component resides completely in the kernel
• Trusted given the threat model of the paper
• Capture system calls, their arguments, and return values
• read, write, open, send, recv, connect
• Build the same traditional provenance graphs

•Keep logs not only to infer causality
• Need to be able to faithfully replay the system’s execution
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Record & Replay: Arnold

•Capture non-determinism for later replay
•Goal is to reproduce complete architectural state of a user 

process
• Record IPC communications
• Cache data of every file  and network I/O
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•Record non-determinism by instrumenting 
pthread in libc
• Enforce determinism when replaying



Story so far
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PRUNING I: Triggering Points

•Want to limit the size of the graph to the most interesting 
nodes
•Three criterion for starting the analysis
• External signals: tips from other sources, CVEs, responsible 

disclosures, etc.
• Security policy: violations to a certain policy are interesting points 

for looking into
• Customized comparisons: compare hashes of downloaded files
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PRUNING II: Reachability Analysis

• Starting from trigger points (points of interest)
• Determine the next set of interesting poinst

• Forward reachability
•Backward reachability
•Point-to-point: Forward & Backward
•Heuristic interference analysis
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Backward Reachability Analysis
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Forward Reachability Analysis
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P2P Reachability
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Interference Pruning

•Track read-after-writes using syscall timestamps
• Remove false dependencies
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Digression

•High dependence on the structure of the graph
•What about loops?
•Processes that touch system files
• /etc, /var, /sys, …
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Taint Analysis Primer

•A process level PET scan
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Selective DIFT

•Use the outcomes of the reachability analysis and trigger 
points
• Start from interference points

•Refinement for
• downstream causality, 
• upstream causality, 
• and point to point causality

•Run taint analysis for different processes independently
• Cache results for improved performance
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DIFT: Upstream Refinement
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P2P Refinement
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Story Recap
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Results: Accuracy
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“In addition, the point-to-point analysis between the “NetRecon.log” and neighboring hosts 
shows the effectiveness of RAIN involving control flow dependency”

-----------
“When we took a closer look at the DIFT, we observed that “over-tainting” situation that 

occurs during control flow-based propagation which is a know limitation of DIFT”.



Results: Performance Hit
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Limitations

• Storage overhead

•Over-tainting issue due to control flow dependencies

•Kernel is a point of trust
•What if exploit is in libc but logging is intact?
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Questions

•Attack that exploits a certain race condition?
• Arnold is having an affair:

“In the presence of data races, the replayed execution may    
diverge from the recorded one”1

•Does record and replay as described work with containers?

271 Devecsery, David, et al. "Eidetic Systems." OSDI. Vol. 14. 2014.


