
Stack	Overflow	Considered	Harmful?	
The	Impact	of	Copy&Paste on	Android	

Application	Security

F.	Fischer*,	K.	Böttinger*,	H.Xiao*,	C.	Stransky†,	Y.	Acar†,	M.	Backes†,	S.	Fahl†

*Fraunhofer AISEC						 †CISPA,	Saarland	University

Presentation	by	Kevin	Liao



Code	copypasta	insecure?



How	prolific	are	security-related	code	snippets	from	
Stack	Overflow	in	Android	applications?

Research	question



Rather	than	discuss	results	at	end…

Present	results	first,	then	analyze	the	methodology

Does	the	methodology	convince	us	of	the	results?

This	talk



The	high-level	approach



The	high-level	approach

Extract	security-related	snippets



The	high-level	approach

Security	analysis



The	high-level	approach

Identify	code	reuse



Results:	Alarming	(potentially)



Extracted	snippets

30	million	posts

2	million	Android-related	posts

~4,000	security-related	snippets



Security	classification

Secure
70%

Insecure
30%



Prevalence	of	code	reuse

1.3	million	free	apps2,673	secure	snippets
1,161	insecure	snippets



Prevalence	of	code	reuse



Prevalence	of	code	reuse



Prevalence	of	code	reuse



Apps	with	security-related	snippets

Secure
2%

Insecure
98%



Top-offender?	TLS…

Other
8%

Empty	TrustManager
92%

• 180k	apps	w/	empty	
Trust	Manager
• Deactivates	server	
verification
• Can	lead	to	MITM



Next	top-offender?	Symmetric	crypto

Other
91%

AES/ECB
9%

• 18k	apps	with	AES	in	
ECB	mode
• Hard-coded	keys



Next	top-offender?	Symmetric	crypto

Other
91%

AES/ECB
9%

• 18k	apps	with	AES	in	
ECB	mode
• Hard-coded	keys



Do	insecure	snippets	have	lower	
scores?



Do	insecure	snippets	with	a	warning	
have	lower	scores?



Are	high	view	count/score	snippets	
copy&pasted more?



Are	high	view	count/score	snippets	
with	a	warning	copy&pasted less?



Discussion	of	methodology

Extract	security-related	snippets



Extract	security	related-snippets

1. Get	all	posts	with	‘Android’	tag
2. Filter	code-snippets	that	use	security	APIs
• TLS/SSL
• Symmetric/asymmetric	crypto
• RNG
• Signatures
• Message	digests
• Authentication/access	control



Discuss	snippet	extraction



Discussion	of	methodology

Security	analysis



Security	analysis

1. Manually	label	snippets	as	secure	or	insecure
2. Train	a	binary	classifier	to	automatically	

determine	security/insecurity	of	all	snippets



tl;dr for	labeling	rules

• SSL/TLS:	Use	TLS	v1.1	or	greater;	don’t	use	old	
crypto
• Symmetric:	Don’t	use	old	crypto;	don’t	use	ECB;	
don’t	use	static/zeroed/derived	keys	or	IVs
• Asymmetric:	Use	>=2048	bit	RSA;	use	>=	244	bit	
ECC
• Hashing:	Don’t	use	MD-family
• RNG:	Use	crypto-secure	RNG;	securely	random	
seed



Security	score	of	training	set



Train	SVM	binary	classifier



Feature	selection

• Based	on	tf-idf
• “The	features	rely	merely	on	the	vocabulary	level	of	
input	code	snippets,	without	even	understanding	
how	they	are	functioning.”
• Claim:	Can	be	more	accurate	and	more	scalable	
than	rule-based	methods



https://chrisalbon.com/machine_learning/preprocessing_text/tf-idf/



Security	classification

Secure
70%

Insecure
30%



Discuss	security	classification



Discussion	of	methodology

Identify	code	reuse



Identify	code	reuse

1. Transform	source	code	and	Dalvik executables	
into	same	IR

2. Identify	similar	code	snippets	using	Program	
Dependency	Graphs	(PDGs)



IR	transformation
Source	code Dalvik executable

Typed	AST

PPA

Bytecode

Lift



Program	Dependency	Graphs

• Generate	PDG	for	each	method
• Nodes:	Statements	in	methods
• Edges:	Data	and	control	dependence



Dependency	edges
Data:	S2	depends	on	S1,	since	A	read	in	S2.

Control:	S2	depends	on	A,	since	A	
determines	S2’s	execution.



Examples	of	PDGs



Prevalence	of	code	reuse



Discuss	identification	of	code	
reuse



Final	discussion

• About	results?
• About	methodology?
• About	future	work?


