
Efficient Data Structures for
Tamper-Evident Logging

Scott A. Crosby Dan S. Wallach

Presented at USENIX Security 2009

Rice University

Assume the adversary doesn’t tamper with the logs.

Reliance on logs

 2

R���: Refinable A�ack Investigation with On-demand
Inter-Process Information Flow Tracking
Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini,

Taesoo Kim, Alessandro Orso, and Wenke Lee
Georgia Institute of Technology

ABSTRACT
As modern attacks become more stealthy and persistent, detecting
or preventing them at their early stages becomes virtually impos-
sible. Instead, an attack investigation or provenance system aims
to continuously monitor and log interesting system events with
minimal overhead. Later, if the system observes any anomalous
behavior, it analyzes the log to identify who initiated the attack and
which resources were a�ected by the attack and then assess and
recover from any damage incurred. However, because of a funda-
mental tradeo� between log granularity and system performance,
existing systems typically record system-call events without de-
tailed program-level activities (e.g., memory operation) required
for accurately reconstructing attack causality or demand that ev-
ery monitored program be instrumented to provide program-level
information.

To address this issue, we propose R���, a Re�nable Attack
INvestigation system based on a record-replay technology that
records system-call events during runtime and performs instruction-
level dynamic information �ow tracking (DIFT) during on-demand
process replay. Instead of replaying every process with DIFT, R���
conducts system-call-level reachability analysis to �lter out un-
related processes and to minimize the number of processes to be
replayed, making inter-process DIFT feasible. Evaluation results
show that R��� e�ectively prunes out unrelated processes and
determines attack causality with negligible false positive rates. In
addition, the runtime overhead of R��� is similar to existing system-
call level provenance systems and its analysis overhead is much
smaller than full-system DIFT.

CCS CONCEPTS
• Security and privacy→ Operating systems security; Infor-
mation �ow control; Intrusion detection systems; • Applied
computing → System forensics; Surveillance mechanisms;
Investigation techniques;

KEYWORDS
attack provenance; record and replay; information �ow analysis;
forensic analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134045

1 INTRODUCTION
Since modern, advanced attacks are sophisticated and stealthy, col-
lecting and analyzing attack provenance data has become essential
for intrusion detection and forensic investigation. For example,
many attack investigation or provenance systems monitor and log
interesting system events continuously to identify which process in-
teracted with an unknown remote host and which process accessed
or modi�ed sensitive �les. If the systems �nd such a suspicious pro-
cess, they will analyze its previous behaviors to determine whether
it was attacked and which resources were a�ected by it.

Attack investigation systems, however, entail a practical limi-
tation because of their two most important but con�icting goals—
collecting a detailed log and minimizing runtime overhead. To
ensure an accurate attack investigation, an instruction-level log
would ideally record the execution of all of the CPU instructions
of all programs. Nevertheless, such systems [49, 50, 54] also incur
tremendous runtime overhead (4⇥–20⇥), so they are impractical
in real computing environments. Therefore, as many attacks even-
tually need to use system calls to access sensitive resources and
devices, other practical systems [12, 24, 33, 34] mainly focus on
system-call information, the collection of which incurs low runtime
overhead (below 10%).

Although system-call-based investigation systems are practical,
they su�er from dependency ambiguity and explosion [33] because
it is di�cult to reconstruct accurate attack causality with only
system-call information. For example, when a process reads from
a number of sensitive �les and sends some (encrypted) data to
a remote host, knowing which sensitive �les the process sends
(or it might not send any sensitive data) without instruction- or
memory-level data-�ow tracking that system-call-level log cannot
provide becomes a challenge. To overcome this limitation, several
systems [12, 23, 33, 34] instrument monitored programs to obtain
interesting program-level information by modifying their source
code or rewriting their binary code. Nevertheless, this approach
is not scalable; that is, it must instrument each program again
whenever it is updated. More importantly, it cannot cover dynamic
code execution (e.g., code injection, self-modifying code, and return-
oriented programming), which is frequently used by exploits.

This paper proposes R���, a practical Re�nable Attack INvesti-
gation system, that selectively provides an instruction-level detailed
log while minimizing runtime overhead. R��� satis�es these con-
�icting goals using a system-call-level record-and-replay technology
and on-demand dynamic information �ow tracking (DIFT). R���
continuously monitors and logs system-call events and additional
data for later replay while constructing a logical provenance graph.
When it detects any anomalous event in the graph, it performs
replay-based DIFT from the event to prune out any unwanted

DeepLog: Anomaly Detection and Diagnosis from System Logs
through Deep Learning

Min Du, Feifei Li, Guineng Zheng, Vivek Srikumar
School of Computing, University of Utah

{mind, lifeifei, guineng, svivek}@cs.utah.edu

ABSTRACT
Anomaly detection is a critical step towards building a secure and
trustworthy system. �e primary purpose of a system log is to
record system states and signi�cant events at various critical points
to help debug system failures and perform root cause analysis. Such
log data is universally available in nearly all computer systems.
Log data is an important and valuable resource for understanding
system status and performance issues; therefore, the various sys-
tem logs are naturally excellent source of information for online
monitoring and anomaly detection. We propose DeepLog, a deep
neural network model utilizing Long Short-Term Memory (LSTM),
to model a system log as a natural language sequence. �is allows
DeepLog to automatically learn log pa�erns from normal execution,
and detect anomalies when log pa�erns deviate from the model
trained from log data under normal execution. In addition, we
demonstrate how to incrementally update the DeepLog model in
an online fashion so that it can adapt to new log pa�erns over time.
Furthermore, DeepLog constructs work�ows from the underlying
system log so that once an anomaly is detected, users can diagnose
the detected anomaly and perform root cause analysis e�ectively.
Extensive experimental evaluations over large log data have shown
that DeepLog has outperformed other existing log-based anomaly
detection methods based on traditional data mining methodologies.

CCS CONCEPTS
•Information systems! Online analytical processing; •Security
and privacy ! Intrusion/anomaly detection and malware mitiga-
tion;

KEYWORDS
Anomaly detection; deep learning; log data analysis.

1 INTRODUCTION
Anomaly detection is an essential task towards building a secure
and trustworthy computer system. As systems and applications
get increasingly more complex than ever before, they are subject
to more bugs and vulnerabilities that an adversary may exploit to
launch a�acks. Such a�acks are also ge�ing increasingly more
sophisticated. As a result, anomaly detection has become more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3133956.3134015

challenging and many traditional anomaly detection methods based
on standard mining methodologies are no longer e�ective.

System logs record system states and signi�cant events at various
critical points to help debug performance issues and failures, and
perform root cause analysis. Such log data is universally available
in nearly all computer systems and is a valuable resource for un-
derstanding system status. Furthermore, since system logs record
noteworthy events as they occur from actively running processes,
they are an excellent source of information for online monitoring
and anomaly detection.

Existing approaches that leverage system log data for anomaly
detection can be broadly classi�ed into three groups: PCA based
approaches over log message counters [39], invariant mining based
methods to capture co-occurrence pa�erns between di�erent log
keys [21], and work�ow based methods to identify execution anom-
alies in program logic �ows [42]. Even though they are successful in
certain scenarios, none of them is e�ective as a universal anomaly
detection method that is able to guard against di�erent a�acks in
an online fashion.

�is work proposes DeepLog, a data-driven approach for anom-
aly detection that leverages the large volumes of system logs. �e
key intuition behind the design of DeepLog is from natural lan-
guage processing: we view log entries as elements of a sequence
that follows certain pa�erns and grammar rules. Indeed, a sys-
tem log is produced by a program that follows a rigorous set of
logic and control �ows, and is very much like a natural language
(though more structured and restricted in vocabulary). To that end,
DeepLog is a deep neural network that models this sequence of log
entries using a Long Short-Term Memory (LSTM) [18]. �is allows
DeepLog to automatically learn a model of log pa�erns from nor-
mal execution and �ag deviations from normal system execution
as anomalies. Furthermore, since it is a learning-driven approach,
it is possible to incrementally update the DeepLog model so that it
can adapt to new log pa�erns that emerge over time.
Challenges. Log data are unstructured, and their format and se-
mantics can vary signi�cantly from system to system. It is already
challenging to diagnose a problem using unstructured logs even
a�er knowing an error has occurred [43]; online anomaly detection
from massive log data is even more challenging. Some existing
methods use rule-based approaches to address this issue, which
requires speci�c domain knowledge [41], e.g., using features like
“IP address” to parse a log. However, this does not work for general
purpose anomaly detection where it is almost impossible to know
a priori what are interesting features in di�erent types of logs (and
to guard against di�erent types of a�acks).

Anomaly detection has to be timely in order to be useful so that
users can intervene in an ongoing a�ack or a system performance
issue [10]. Decisions are to be made in streaming fashion. As

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1285

Towards Scalable Cluster Auditing through
Grammatical Inference over Provenance Graphs

Wajih Ul Hassan, Mark Lemay,‡ Nuraini Aguse, Adam Bates, Thomas Moyer⇤

University of Illinois at Urbana-Champaign

{whassan3,aguse2,batesa}@illinois.edu
‡

Boston University

lemay@bu.edu
⇤

UNC Charlotte

tom.moyer@uncc.edu

Abstract—Investigating the nature of system intrusions in
large distributed systems remains a notoriously difficult challenge.
While monitoring tools (e.g., Firewalls, IDS) provide preliminary
alerts through easy-to-use administrative interfaces, attack recon-
struction still requires that administrators sift through gigabytes
of system audit logs stored locally on hundreds of machines.
At present, two fundamental obstacles prevent synergy between
system-layer auditing and modern cluster monitoring tools: 1)
the sheer volume of audit data generated in a data center is
prohibitively costly to transmit to a central node, and 2) system-
layer auditing poses a “needle-in-a-haystack” problem, such that
hundreds of employee hours may be required to diagnose a single
intrusion.

This paper presents Winnower, a scalable system for audit-
based cluster monitoring that addresses these challenges. Our
key insight is that, for tasks that are replicated across nodes in
a distributed application, a model can be defined over audit logs
to succinctly summarize the behavior of many nodes, thus elimi-
nating the need to transmit redundant audit records to a central
monitoring node. Specifically, Winnower parses audit records into
provenance graphs that describe the actions of individual nodes,
then performs grammatical inference over individual graphs
using a novel adaptation of Deterministic Finite Automata (DFA)
Learning to produce a behavioral model of many nodes at once.
This provenance model can be efficiently transmitted to a central
node and used to identify anomalous events in the cluster. We have
implemented Winnower for Docker Swarm container clusters
and evaluate our system against real-world applications and
attacks. We show that Winnower dramatically reduces storage
and network overhead associated with aggregating system audit
logs, by as much as 98%, without sacrificing the important
information needed for attack investigation. Winnower thus
represents a significant step forward for security monitoring in
distributed systems.

I. INTRODUCTION

When investigating system intrusions, auditing large com-
pute clusters remains a costly and error-prone process. Security
monitoring tools such as firewalls and antivirus provide an
efficient preliminary alert system for administrators, quickly

notifying them if a suspicious activity such as a malware
signature or a blacklisted IP is spotted somewhere in the
cluster. However, determining the veracity and context of these
compromise indicators still ultimately requires the inspection
of system-layer audit logs. Unfortunately, auditing systems
are not scaling to meet the needs of modern computing
paradigms. System logs generate gigabytes of information per
node per day, making it impractical to proactively store and
process these records centrally. Moreover, the volume of audit
information transforms attack reconstruction into a “needle-
in-a-haystack” problem. In Advanced Persistent Threat (APT)
scenarios, this reality delays incident response for months [48]
as security teams spend hundreds to thousands of employee
hours stitching together log records from dozens of machines.

The audit problem is only further exacerbated by the grow-
ing popularity of container-based virtualization, which has en-
abled rapid deployment and extreme scalability in datacenters
and other multi-tenant environments [22]. Containers represent
the realization of the microservice architecture principle [59], a
popular pattern that encourages applications to run as discrete,
loosely-coupled, and replicated services to provide scalability
and fault-tolerance. However, the rapid adoption of containers
has outpaced system administrators’ ability to apply control
and governance to their production environments. Container
marketplaces such as Docker Store [4] now host over 0.5
million containers and boast over 8 billion downloads [1];
while these services simplify the sharing of applications, they
also create a new ecosystem in which poorly maintained
or malicious code is permitted to spread. These containers
have no security guarantees and can contain vulnerabilities
that could be used as attack vectors [65], [63]. Recently,
Red Hat surveyed enterprises to figure out technical factors
which prevent the use of containers in production and 75% of
enterprises claimed security to be a major concern [9].

Data provenance, metadata that describes the lineage of
data transformed by a system, is a promising new approach
to system auditing. In the context of operating systems,
provenance-based techniques parse kernel-layer audit records
into a causal graph that describes the history of system
execution [20], [58], [50], [47], [60]. The applications for
data provenance are numerous, ranging from database manage-
ment [30], [35], [45], networks diagnosis and debugging [26],
[27], and forensic reconstruction of a chain of events after an
attack [18], [72], [19], [67]. Unfortunately, even state-of-the-
art provenance-based techniques are not presently applicable to
the cluster auditing problem as they suffer from huge storage

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23141
www.ndss-symposium.org

Can we trust the logs?

 3

The attacker may modify the log file to
cover their traces!

Goal: An event, once correctly logged,
cannot be undetectably hidden or
modified.

Industry practice

 4

Send logs to a trusted central server

This paper

 5

Allow the central server to be untrusted.

Ingredients:
1. Auditing
2. History Tree

High-level design

 6

• Logger (central server)
- Stores logs

• Clients
- Generate logs

• Auditors
- Verify the correct operation of the logger

Logger

 7

• Logs come in
• Commitments go out

Logger

Xn-3

Xn-2

Xn-1

Cn-3

Cn-2

Cn-1

Commitments

 8

• Each commits to the entire past. Example
construction [Kelsey, Schneier]:

- Cn = H(Cn-1 || Xn)

Xn-1Xn-2Xn-3

Cn-2Cn-3 Cn-1

Xn-4

Cn-4

• They are signed by the logger

We don’t trust the logger!

 9

• Does really contain ?

• Do and commit the same historical
events?

• Is the event at index i in the log defined
by really ?

Xn-3

Cn-2

Cn-3

Cn-1

XiCn

Example: log forks

 10

• What if the logger rolls back the log and adds
on different events?

Solution: Auditing

 11

• Check the returned commitments
- For correct event lookup
- For consistency

Two kinds of audits

 12

• Membership auditing

- Verify proper insertion

- Lookup historical events

• Incremental auditing

- Prove consistency  
between two commitments

Ci Cn

XiCni , , P

, P

Who does what?

 13

• Clients must redistribute their received
commitments from the logger to auditors.

• A host can be both client and auditor at the
same time.

• Auditing strategies are not discussed in
detail.

Making audits cheap

 14

• Logs are stored in a history tree

Membership Auditing

 15

Given) return (, P), where P is: X3C7(3,

Valid if root == .C7

P takes O(log n) to build

Valid if: 
- P is consistent 
with 
- P is consistent 
with

Valid if: 
- P is consistent 
with 
- P is consistent 
with

C3

Incremental Auditing

 16

Given (,) return (P), where P is: C7

Valid if: 
- P is consistent 
with 
- P is consistent 
with

C7

P takes O(log n) to build

C3

C3

C7 ==

Merkle Aggregation

 17

History trees can be extended to annotate
events with attributes.

Application: support content searches.

• Max()

Find all transactions over $6

Performance

 18

• Insert performance: 1,750 events/sec
- 2.4%: Parse the log event
- 2.6%: Insert the event to the tree
- 11.8%: Get root commitment
- 83.3%: Sign commitment

• Proof generation:
- With locality (all events in RAM):

• 10,000-18,000 incremental proofs/sec
• 8,600 membership proofs/sec

- Without locality
• 30 membership proofs/sec

Recap

 19

• History trees allow the logger to store log
events and generate integrity proofs efficiently.

• Other hosts (auditors) need to demand those
proofs to ensure the logs are not tampered.

• Result: the logger can be untrusted (but at
least one auditor needs to be honest).

Discussion

 20

• No security analysis: what happens if a client
colludes with the logger? What if the secret key
of the logger is compromised?

• No full-system evaluation with multiple hosts.
Network overhead? Overhead of redistributing
commitments with gossip? Scalability?

• No auditing strategies are presented. What kind
of audits, from whom and how often should be
asked to the logger? What happens when
tampering is detected? Lying auditors?

