PAPER PRESENTATION: HIGHLY PREDICTIVE BLACKLISTING

John Bambenek CS 563

PROBLEM

- There are "tons" of malicious events detected by firewalls, intrusion detection systems, web application firewalls, etc.
- The adversarial infrastructure may be persistent, may be a VPS, compromised host, etc.
- Can I determine both what is most relevant to my organization and relevant globally that will be worth blocking "in the future"?

PROBLEM

- Consider your typical firewall:
- iptables –A INPUT –p 80 –j ACCEPT
 - What does this not protect against?

WHAT IS DSHIELD?

- Run by SANS (I'm one of the Handlers) where people submit firewall and IDS block logs from around the world.
- Also can operate a DShield sensor as a raspberry pi. Primarily finds port-level blocks and darknet traffic.
- Each user has their own ID, can also "action" blocks. In turn, this gives a huge dataset that is "mostly" globally representative about "loud attacks".

THREE APPROACHES

- Global Worst Offender Lists (GWOL)
 - Misses targeted or localized attacks
- Local Worst Offender Lists (LWOL)
 - Misses attacks that may not have "gotten there" yet
- This paper introduces Highly-Predictive Blacklist (HPB) that uses elements of both.

HPB APPROACH

- Analogous to Google PageRank
- Incorporates the following:
 - Log prefiltering (i.e. RFC 1918 addresses, "local" addresses, etc
 - Relevance based ranking (per-contributor basis)
 - Severity analysis (looks at known malware propagation patterns)

ARCHITECTURE

PRE-FILTERING

- Drop the obvious noise:
 - RFC 1918 addresses
 - Bogons
 - Unassigned IPs
 - Why?
- Drop "internet measurement" services, crawlers, etc. Why?
- Drop common ports (80, 53, 25, 443)

RELEVANCE RANKING

• How "close" is a specific attacker to a specific victim?

• If you have enough data about many victims, you can see patterns and order of how attacks progress through internet. (i.e. Attacker X will always hit Victim A 2 days

before Victim B.)

	v_1	v_2	v_3	v_4	v_5
s_1	*	*			
s_2	*	*			
s_3	*		*		
s_4		*	*		
s_5		*			
s_6				*	*
s_7			*		
s_8			*	*	

Table 1: Sample Attack Table

RELEVANCE RANKING

• Create a matrix based on (m_{ij} / m_i) (common attack sources / all attack sources) for each relationship between victims and sources. (First pass)

$$\begin{pmatrix}
0 & 0.33 & 0.083 & 0 & 0 \\
0.33 & 0 & 0.063 & 0 & 0 \\
0.083 & 0.063 & 0 & 0.13 & 0 \\
0 & 0 & 0.13 & 0 & 0.5 \\
0 & 0 & 0 & 0.5 & 0
\end{pmatrix}$$

Figure 2: Standardized Correlation Matrix for Attack Table 1

 R^s = W x b^s (Relvancy vector is product of Adjacency matrix and attack vector)

RELEVANCE WITH "LOOK AHEAD"

Figure 3: Relevance Evaluation Considers Possible Future Attacks

PROPAGATING RELEVANCY

• Better version is:

$$\mathbf{r}^{s} = \sum_{i=1}^{\infty} (\alpha \mathbf{W})^{i} \cdot \mathbf{b}^{s}$$
$$\mathbf{x} = \mathbf{b}^{s} + \alpha \mathbf{W} \cdot \mathbf{x}$$

Solving for x:

$$x = b^s + \alpha W \cdot x$$

• This gives something used by PageRank to figure relevant results.

ATTACK SEVERITY

- Note: This paper was done in 2008. This is important.
- Malicious behavior modeled after typical "scan-and-infect" behavior.
- Calculates based on /24 network basis.
- Three factors used: Port Score, Target Count, International Victim Count

```
53 - UDP
            69 - UDP
                          137 - UDP
                                      21 - TCP
                                                   53 - TCP
                                                                42 - TCP
135 - TCP
                                       559 - TCP
            139 - TCP
                         445 - TCP
                                                   1025 - TCP
                                                                 1433 - TCP
2082 - TCP
            2100 - TCP
                         2283 - TCP
                                       2535 - TCP
                                                   2745 - TCP
                                                                 2535 - TCP
3127 - TCP
            3128 - TCP
                         3306 - TCP
                                      3410 - TCP
                                                   5000 - TCP
                                                                 5554 - TCP
6101 - TCP
            6129 - TCP
                          8866 - TCP
                                      9898 - TCP
                                                   10000 - TCP
                                                                 10080 - TCP
12345 - TCP
            11768 - TCP
                          15118 - TCP
                                      17300 - TCP
                                                   27374 - TCP
                                                                65506 - TCP
4444 - TCP
             9995 - TCP
                         9996 - TCP
                                       17300 - TCP
                                                   3140 - TCP
                                                                 9033 - TCP
1434 - UDP
```

Figure 5: Malware Associated Ports

LIST PRODUCTION

- Then just sort by score and pick X to generate the list.
 - All protective technologies (firewalls, routers, etc) have limits in how many entries they can accept.
- Results showed a 20-30% increase.

	Increase	Increase	Increase	Increase
	Average	Median	StdDev	Range
vs. GWOL	129	78	124	40 to 732
vs. LWOL	183	188	93	59 to 491

Table 5: Top 200 Contributors' Hit Count Increases (Blacklist Length 1000)

RISKS

- · Can a false positive entry be included?
 - There is a global white-list but not a localized one (and more importantly, there is no "good" global whitelist. (Some of my upcoming research).
- Can an attacker get their attacks excluded?
 - Can be a sensor and try to break various elements of alignment but requires broad (but not complete) knowledge of the ecosystem and relationships.
- Can all the data be poisoned?
 - It's a volunteer system, so anyone can join and dump in junk data

CURRENT STATE

(Not in paper)

- SRI has "abandoned" the code.
- DShield no longer generates HBPLs.
- *Incoming* attack data is not as important as *outgoing* attack data.
 - Malware beacons out now, reverse shells are common. Best way to beat a firewall is to have a machine on inside using existing ACLs.

QUESTIONS?