
ReCon: Revealing and Controlling PII Leaks
in Mobile Network Systems

Jingjing Ren, Martina Lindorfer, Ashwin Rao, Arnaud Legout, David Choffnes
(MobiSys ‘16)

Presented by : Umar Farooq
CS 563

Fall 2018

Mobile Phones today..

q Offer ubiquitous connectivity
qEquipped with a wide array of sensors
qExamples; GPS, camera, microphone etc.

Problems

q Personally identifiable info. (PII) leakage
§ Device Identifiers (IMEI, MAC address, etc.)
§ User Information (name, gender, contact info,

etc.)
§ Location (GPS, zip code)
§ Credentials (?)

q Device Fingerprinting
qCross Platform tracking

0

0.1

0.2

0.3

0.4

0.5

0.6

User Identifier
(email, name,
gender etc.)

Contact Info Location Credential
(username,
password)

Device Identifier
(IMEI, Advertiser

ID, MAC etc.)

App Store Google Play WP Store

Goals for this work

q Identify PII leakage without a priori
information

q Provide users a platform to view potential PII
leaks (i.e increase user visibility and
transparency)

Approach..

qOpportunity: Almost all devices support VPNs
q Have a trusted third party system to audit

network flows
§ Tunnel traffic to a controlled server (trusted

server)
§ Measure, modify, shape or block -
traffic with user opt in

Why should this work?

So, what does a PII look like?

GET
/index.html?id=12340;foo=bar;name=CS5
63@Illini;pass=jf3jNF#5h
How can we identify a PII leak?
Naïve approach: Pattern matching.

ReCon:

A system using supervised ML to accurately identify
and control PII leaks from network traffic with
crowdsource reinforcement.

Automatically Identifying PII leaks
qHypothesis: PII leaks have distinguishing

characteristics
§ Is it just simple key/value pairs (e-g

“user_id=563”)
• Nope, leads to high FPR (5.1%) and high FNR (18.8%).

qNeed to learn structure of PII leaks.
qApproach: Build ML classifiers to reliably

detect leaks.
§ Doesn’t require knowing PII in advance
§ Resilient to changes in PII formats over time.

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and train a model
using labeled network flows (top), then use this model to predict whether
new network flows are leaking PII. Based on user feedback, we retrain our
classifier (bottom). Periodically, we update our classifier with results from
new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users can view
how their PII is leaked, validate the suspected PII leaks, and create custom
filters to block or modify leaks.

ronment. For example, information flow analysis [21] may
identify PII leaks not revealed by ReCon. In fact, ReCon can
leverage information flow analysis techniques to improve its
coverage, as we demonstrate in §5.3. Importantly, ReCon
allows us to identify and block unobfuscated PII in network
flows from arbitrary devices without requiring OS modifica-
tions or taint tracking.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to

identify and modify PII leaks, it admits a variety of deploy-
ment models, e.g., in the cloud, in home devices, inside an
ISP, or on mobile devices. We are currently hosting this
service on Meddle in a cloud-based deployment because it
provides immediate cross-platform support with low over-
heads [44]. We are also in discussions with Telefonica to
deploy ReCon on their Awazza [4] APN proxy, which has
attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. We have
two deployment models: (approval #13-08-04) captures all
of a subject’s Internet traffic and entails in-person, signed in-
formed consent; the second study (approval #13-11-17) cap-
tures only HTTP GET/POST parameters (where most leaks
occur) and users consent via an online form. The secret key
is stored on a separate secure server and users can delete
their data at any time. We will make the ReCon source code
publicly available. For those who want to run their own Re-
Con instance (e.g. if they do not want to participate in our
study), our system requires only that a user has root on a
Linux OS. ReCon can be deployed in a single-machine in-
stance on a home computer, as Raspberry Pi plugged into
a home router, a dedicated server in an enterprise, on the
device itself, or VM in the cloud. One can also selectively
route traffic to different ReCon instances, e.g., to a cloud
instance for HTTP traffic and a trusted home instance to de-
crypt HTTPS connections to identify PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We

evaluate our design decisions in the following section, and
demonstrate how they hold up “in the wild” via a user study
with 92 participants. Table 2 presents a roadmap for the
remainder of the paper, highlighting key design decisions,
evaluation criteria, and results. The ReCon pipeline begins
with parsing network flows, then passing each flow to a ma-
chine learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [25] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below. Our input dataset is the set of labeled
flows from our controlled experiments in §2.2. To evaluate
our classifiers, we use k-fold cross validation, where a ran-
dom (k � 1)/k of the flows in our dataset are used to train
the classifier, and the remaining 1/k of the flows are tested
for accuracy. This process is repeated n times to understand
the stability of our results (see §5).
Feature extraction. The problem of identifying whether a
flow contains PII is similar to the document classification
problem,5 so we use the “bag-of-words” model [29]. We
choose certain characters as separators and consider any-
thing between those separators to be words. Then for each
flow, we produce a vector of binary values where each word
that appears in a flow is set to 1, and each word that does not
is set to 0.

A key challenge for feature extraction in network flows is
that there is no standard token (e.g. whitespace or punctu-
ation) to use for splitting flows into words. For example, a

5Here, network flows are documents and structured data are words.

5

• Manual test: top 100 apps from each official
store

• Automatic test: top 850 Android apps from a
third party store

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and train a model
using labeled network flows (top), then use this model to predict whether
new network flows are leaking PII. Based on user feedback, we retrain our
classifier (bottom). Periodically, we update our classifier with results from
new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users can view
how their PII is leaked, validate the suspected PII leaks, and create custom
filters to block or modify leaks.

ronment. For example, information flow analysis [21] may
identify PII leaks not revealed by ReCon. In fact, ReCon can
leverage information flow analysis techniques to improve its
coverage, as we demonstrate in §5.3. Importantly, ReCon
allows us to identify and block unobfuscated PII in network
flows from arbitrary devices without requiring OS modifica-
tions or taint tracking.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to

identify and modify PII leaks, it admits a variety of deploy-
ment models, e.g., in the cloud, in home devices, inside an
ISP, or on mobile devices. We are currently hosting this
service on Meddle in a cloud-based deployment because it
provides immediate cross-platform support with low over-
heads [44]. We are also in discussions with Telefonica to
deploy ReCon on their Awazza [4] APN proxy, which has
attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. We have
two deployment models: (approval #13-08-04) captures all
of a subject’s Internet traffic and entails in-person, signed in-
formed consent; the second study (approval #13-11-17) cap-
tures only HTTP GET/POST parameters (where most leaks
occur) and users consent via an online form. The secret key
is stored on a separate secure server and users can delete
their data at any time. We will make the ReCon source code
publicly available. For those who want to run their own Re-
Con instance (e.g. if they do not want to participate in our
study), our system requires only that a user has root on a
Linux OS. ReCon can be deployed in a single-machine in-
stance on a home computer, as Raspberry Pi plugged into
a home router, a dedicated server in an enterprise, on the
device itself, or VM in the cloud. One can also selectively
route traffic to different ReCon instances, e.g., to a cloud
instance for HTTP traffic and a trusted home instance to de-
crypt HTTPS connections to identify PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We

evaluate our design decisions in the following section, and
demonstrate how they hold up “in the wild” via a user study
with 92 participants. Table 2 presents a roadmap for the
remainder of the paper, highlighting key design decisions,
evaluation criteria, and results. The ReCon pipeline begins
with parsing network flows, then passing each flow to a ma-
chine learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [25] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below. Our input dataset is the set of labeled
flows from our controlled experiments in §2.2. To evaluate
our classifiers, we use k-fold cross validation, where a ran-
dom (k � 1)/k of the flows in our dataset are used to train
the classifier, and the remaining 1/k of the flows are tested
for accuracy. This process is repeated n times to understand
the stability of our results (see §5).
Feature extraction. The problem of identifying whether a
flow contains PII is similar to the document classification
problem,5 so we use the “bag-of-words” model [29]. We
choose certain characters as separators and consider any-
thing between those separators to be words. Then for each
flow, we produce a vector of binary values where each word
that appears in a flow is set to 1, and each word that does not
is set to 0.

A key challenge for feature extraction in network flows is
that there is no standard token (e.g. whitespace or punctu-
ation) to use for splitting flows into words. For example, a

5Here, network flows are documents and structured data are words.

5

• Feature extraction: bag of words

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and train a model
using labeled network flows (top), then use this model to predict whether
new network flows are leaking PII. Based on user feedback, we retrain our
classifier (bottom). Periodically, we update our classifier with results from
new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users can view
how their PII is leaked, validate the suspected PII leaks, and create custom
filters to block or modify leaks.

ronment. For example, information flow analysis [21] may
identify PII leaks not revealed by ReCon. In fact, ReCon can
leverage information flow analysis techniques to improve its
coverage, as we demonstrate in §5.3. Importantly, ReCon
allows us to identify and block unobfuscated PII in network
flows from arbitrary devices without requiring OS modifica-
tions or taint tracking.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to

identify and modify PII leaks, it admits a variety of deploy-
ment models, e.g., in the cloud, in home devices, inside an
ISP, or on mobile devices. We are currently hosting this
service on Meddle in a cloud-based deployment because it
provides immediate cross-platform support with low over-
heads [44]. We are also in discussions with Telefonica to
deploy ReCon on their Awazza [4] APN proxy, which has
attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. We have
two deployment models: (approval #13-08-04) captures all
of a subject’s Internet traffic and entails in-person, signed in-
formed consent; the second study (approval #13-11-17) cap-
tures only HTTP GET/POST parameters (where most leaks
occur) and users consent via an online form. The secret key
is stored on a separate secure server and users can delete
their data at any time. We will make the ReCon source code
publicly available. For those who want to run their own Re-
Con instance (e.g. if they do not want to participate in our
study), our system requires only that a user has root on a
Linux OS. ReCon can be deployed in a single-machine in-
stance on a home computer, as Raspberry Pi plugged into
a home router, a dedicated server in an enterprise, on the
device itself, or VM in the cloud. One can also selectively
route traffic to different ReCon instances, e.g., to a cloud
instance for HTTP traffic and a trusted home instance to de-
crypt HTTPS connections to identify PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We

evaluate our design decisions in the following section, and
demonstrate how they hold up “in the wild” via a user study
with 92 participants. Table 2 presents a roadmap for the
remainder of the paper, highlighting key design decisions,
evaluation criteria, and results. The ReCon pipeline begins
with parsing network flows, then passing each flow to a ma-
chine learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [25] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below. Our input dataset is the set of labeled
flows from our controlled experiments in §2.2. To evaluate
our classifiers, we use k-fold cross validation, where a ran-
dom (k � 1)/k of the flows in our dataset are used to train
the classifier, and the remaining 1/k of the flows are tested
for accuracy. This process is repeated n times to understand
the stability of our results (see §5).
Feature extraction. The problem of identifying whether a
flow contains PII is similar to the document classification
problem,5 so we use the “bag-of-words” model [29]. We
choose certain characters as separators and consider any-
thing between those separators to be words. Then for each
flow, we produce a vector of binary values where each word
that appears in a flow is set to 1, and each word that does not
is set to 0.

A key challenge for feature extraction in network flows is
that there is no standard token (e.g. whitespace or punctu-
ation) to use for splitting flows into words. For example, a

5Here, network flows are documents and structured data are words.

5

• Feature extraction: bag of words
• Use thresholds to remove infrequent or too

frequent words

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and train a model
using labeled network flows (top), then use this model to predict whether
new network flows are leaking PII. Based on user feedback, we retrain our
classifier (bottom). Periodically, we update our classifier with results from
new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users can view
how their PII is leaked, validate the suspected PII leaks, and create custom
filters to block or modify leaks.

ronment. For example, information flow analysis [21] may
identify PII leaks not revealed by ReCon. In fact, ReCon can
leverage information flow analysis techniques to improve its
coverage, as we demonstrate in §5.3. Importantly, ReCon
allows us to identify and block unobfuscated PII in network
flows from arbitrary devices without requiring OS modifica-
tions or taint tracking.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to

identify and modify PII leaks, it admits a variety of deploy-
ment models, e.g., in the cloud, in home devices, inside an
ISP, or on mobile devices. We are currently hosting this
service on Meddle in a cloud-based deployment because it
provides immediate cross-platform support with low over-
heads [44]. We are also in discussions with Telefonica to
deploy ReCon on their Awazza [4] APN proxy, which has
attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. We have
two deployment models: (approval #13-08-04) captures all
of a subject’s Internet traffic and entails in-person, signed in-
formed consent; the second study (approval #13-11-17) cap-
tures only HTTP GET/POST parameters (where most leaks
occur) and users consent via an online form. The secret key
is stored on a separate secure server and users can delete
their data at any time. We will make the ReCon source code
publicly available. For those who want to run their own Re-
Con instance (e.g. if they do not want to participate in our
study), our system requires only that a user has root on a
Linux OS. ReCon can be deployed in a single-machine in-
stance on a home computer, as Raspberry Pi plugged into
a home router, a dedicated server in an enterprise, on the
device itself, or VM in the cloud. One can also selectively
route traffic to different ReCon instances, e.g., to a cloud
instance for HTTP traffic and a trusted home instance to de-
crypt HTTPS connections to identify PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We

evaluate our design decisions in the following section, and
demonstrate how they hold up “in the wild” via a user study
with 92 participants. Table 2 presents a roadmap for the
remainder of the paper, highlighting key design decisions,
evaluation criteria, and results. The ReCon pipeline begins
with parsing network flows, then passing each flow to a ma-
chine learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [25] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below. Our input dataset is the set of labeled
flows from our controlled experiments in §2.2. To evaluate
our classifiers, we use k-fold cross validation, where a ran-
dom (k � 1)/k of the flows in our dataset are used to train
the classifier, and the remaining 1/k of the flows are tested
for accuracy. This process is repeated n times to understand
the stability of our results (see §5).
Feature extraction. The problem of identifying whether a
flow contains PII is similar to the document classification
problem,5 so we use the “bag-of-words” model [29]. We
choose certain characters as separators and consider any-
thing between those separators to be words. Then for each
flow, we produce a vector of binary values where each word
that appears in a flow is set to 1, and each word that does not
is set to 0.

A key challenge for feature extraction in network flows is
that there is no standard token (e.g. whitespace or punctu-
ation) to use for splitting flows into words. For example, a

5Here, network flows are documents and structured data are words.

5

• Ground truth from the controlled experiments
• C4.5 decision tree
• Per-domain and per-OS classifier

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and train a model
using labeled network flows (top), then use this model to predict whether
new network flows are leaking PII. Based on user feedback, we retrain our
classifier (bottom). Periodically, we update our classifier with results from
new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users can view
how their PII is leaked, validate the suspected PII leaks, and create custom
filters to block or modify leaks.

ronment. For example, information flow analysis [21] may
identify PII leaks not revealed by ReCon. In fact, ReCon can
leverage information flow analysis techniques to improve its
coverage, as we demonstrate in §5.3. Importantly, ReCon
allows us to identify and block unobfuscated PII in network
flows from arbitrary devices without requiring OS modifica-
tions or taint tracking.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to

identify and modify PII leaks, it admits a variety of deploy-
ment models, e.g., in the cloud, in home devices, inside an
ISP, or on mobile devices. We are currently hosting this
service on Meddle in a cloud-based deployment because it
provides immediate cross-platform support with low over-
heads [44]. We are also in discussions with Telefonica to
deploy ReCon on their Awazza [4] APN proxy, which has
attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. We have
two deployment models: (approval #13-08-04) captures all
of a subject’s Internet traffic and entails in-person, signed in-
formed consent; the second study (approval #13-11-17) cap-
tures only HTTP GET/POST parameters (where most leaks
occur) and users consent via an online form. The secret key
is stored on a separate secure server and users can delete
their data at any time. We will make the ReCon source code
publicly available. For those who want to run their own Re-
Con instance (e.g. if they do not want to participate in our
study), our system requires only that a user has root on a
Linux OS. ReCon can be deployed in a single-machine in-
stance on a home computer, as Raspberry Pi plugged into
a home router, a dedicated server in an enterprise, on the
device itself, or VM in the cloud. One can also selectively
route traffic to different ReCon instances, e.g., to a cloud
instance for HTTP traffic and a trusted home instance to de-
crypt HTTPS connections to identify PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We

evaluate our design decisions in the following section, and
demonstrate how they hold up “in the wild” via a user study
with 92 participants. Table 2 presents a roadmap for the
remainder of the paper, highlighting key design decisions,
evaluation criteria, and results. The ReCon pipeline begins
with parsing network flows, then passing each flow to a ma-
chine learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [25] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below. Our input dataset is the set of labeled
flows from our controlled experiments in §2.2. To evaluate
our classifiers, we use k-fold cross validation, where a ran-
dom (k � 1)/k of the flows in our dataset are used to train
the classifier, and the remaining 1/k of the flows are tested
for accuracy. This process is repeated n times to understand
the stability of our results (see §5).
Feature extraction. The problem of identifying whether a
flow contains PII is similar to the document classification
problem,5 so we use the “bag-of-words” model [29]. We
choose certain characters as separators and consider any-
thing between those separators to be words. Then for each
flow, we produce a vector of binary values where each word
that appears in a flow is set to 1, and each word that does not
is set to 0.

A key challenge for feature extraction in network flows is
that there is no standard token (e.g. whitespace or punctu-
ation) to use for splitting flows into words. For example, a

5Here, network flows are documents and structured data are words.

5

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and train a model
using labeled network flows (top), then use this model to predict whether
new network flows are leaking PII. Based on user feedback, we retrain our
classifier (bottom). Periodically, we update our classifier with results from
new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users can view
how their PII is leaked, validate the suspected PII leaks, and create custom
filters to block or modify leaks.

ronment. For example, information flow analysis [21] may
identify PII leaks not revealed by ReCon. In fact, ReCon can
leverage information flow analysis techniques to improve its
coverage, as we demonstrate in §5.3. Importantly, ReCon
allows us to identify and block unobfuscated PII in network
flows from arbitrary devices without requiring OS modifica-
tions or taint tracking.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to

identify and modify PII leaks, it admits a variety of deploy-
ment models, e.g., in the cloud, in home devices, inside an
ISP, or on mobile devices. We are currently hosting this
service on Meddle in a cloud-based deployment because it
provides immediate cross-platform support with low over-
heads [44]. We are also in discussions with Telefonica to
deploy ReCon on their Awazza [4] APN proxy, which has
attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. We have
two deployment models: (approval #13-08-04) captures all
of a subject’s Internet traffic and entails in-person, signed in-
formed consent; the second study (approval #13-11-17) cap-
tures only HTTP GET/POST parameters (where most leaks
occur) and users consent via an online form. The secret key
is stored on a separate secure server and users can delete
their data at any time. We will make the ReCon source code
publicly available. For those who want to run their own Re-
Con instance (e.g. if they do not want to participate in our
study), our system requires only that a user has root on a
Linux OS. ReCon can be deployed in a single-machine in-
stance on a home computer, as Raspberry Pi plugged into
a home router, a dedicated server in an enterprise, on the
device itself, or VM in the cloud. One can also selectively
route traffic to different ReCon instances, e.g., to a cloud
instance for HTTP traffic and a trusted home instance to de-
crypt HTTPS connections to identify PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We

evaluate our design decisions in the following section, and
demonstrate how they hold up “in the wild” via a user study
with 92 participants. Table 2 presents a roadmap for the
remainder of the paper, highlighting key design decisions,
evaluation criteria, and results. The ReCon pipeline begins
with parsing network flows, then passing each flow to a ma-
chine learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [25] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below. Our input dataset is the set of labeled
flows from our controlled experiments in §2.2. To evaluate
our classifiers, we use k-fold cross validation, where a ran-
dom (k � 1)/k of the flows in our dataset are used to train
the classifier, and the remaining 1/k of the flows are tested
for accuracy. This process is repeated n times to understand
the stability of our results (see §5).
Feature extraction. The problem of identifying whether a
flow contains PII is similar to the document classification
problem,5 so we use the “bag-of-words” model [29]. We
choose certain characters as separators and consider any-
thing between those separators to be words. Then for each
flow, we produce a vector of binary values where each word
that appears in a flow is set to 1, and each word that does not
is set to 0.

A key challenge for feature extraction in network flows is
that there is no standard token (e.g. whitespace or punctu-
ation) to use for splitting flows into words. For example, a

5Here, network flows are documents and structured data are words.

5

Evaluation – Accuracy (CCR)

• DT outperforms Naïve Bayes
• Time: DT based ensembles take more time than a simple DT
• More than 95% accuracy per-domain-and per OS l

• Greater than the General Classifier
• 60% DTs zero error.

Evaluation – Accuracy (AUC)

• Area under the curve (AUC) [0,1]
- Demonstrates the predictive power of the classifier

• Most (67%) DT-based classifiers have AUC = 1

Evaluation – Accuracy (FNR and FPR)

Most DT based classifiers have zero FPs (71.4%) and FNs (76.2%)

Evaluation – Comparison with IFA

qInformation flow analysis (IFA)
§ Resilient to encrypted / obfuscated flow

• Dynamic IFA: Andrubis
• Static IFA: Flowdroid
• Hybrid IFA: AppAudit
Information flow analysis (IFA)

qSusceptible to false positives, but not false
negatives

ReCon vs. static and dynamic analysis

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Device Identifier User Identifier Conta ct Info Locat ion

FlowDro id(Static IFA)
Andrubis (Dynamic IFA)
AppAudit(Hybrid IFA)
ReCon

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and train a model
using labeled network flows (top), then use this model to predict whether
new network flows are leaking PII. Based on user feedback, we retrain our
classifier (bottom). Periodically, we update our classifier with results from
new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users can view
how their PII is leaked, validate the suspected PII leaks, and create custom
filters to block or modify leaks.

ronment. For example, information flow analysis [21] may
identify PII leaks not revealed by ReCon. In fact, ReCon can
leverage information flow analysis techniques to improve its
coverage, as we demonstrate in §5.3. Importantly, ReCon
allows us to identify and block unobfuscated PII in network
flows from arbitrary devices without requiring OS modifica-
tions or taint tracking.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to

identify and modify PII leaks, it admits a variety of deploy-
ment models, e.g., in the cloud, in home devices, inside an
ISP, or on mobile devices. We are currently hosting this
service on Meddle in a cloud-based deployment because it
provides immediate cross-platform support with low over-
heads [44]. We are also in discussions with Telefonica to
deploy ReCon on their Awazza [4] APN proxy, which has
attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. We have
two deployment models: (approval #13-08-04) captures all
of a subject’s Internet traffic and entails in-person, signed in-
formed consent; the second study (approval #13-11-17) cap-
tures only HTTP GET/POST parameters (where most leaks
occur) and users consent via an online form. The secret key
is stored on a separate secure server and users can delete
their data at any time. We will make the ReCon source code
publicly available. For those who want to run their own Re-
Con instance (e.g. if they do not want to participate in our
study), our system requires only that a user has root on a
Linux OS. ReCon can be deployed in a single-machine in-
stance on a home computer, as Raspberry Pi plugged into
a home router, a dedicated server in an enterprise, on the
device itself, or VM in the cloud. One can also selectively
route traffic to different ReCon instances, e.g., to a cloud
instance for HTTP traffic and a trusted home instance to de-
crypt HTTPS connections to identify PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We

evaluate our design decisions in the following section, and
demonstrate how they hold up “in the wild” via a user study
with 92 participants. Table 2 presents a roadmap for the
remainder of the paper, highlighting key design decisions,
evaluation criteria, and results. The ReCon pipeline begins
with parsing network flows, then passing each flow to a ma-
chine learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [25] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below. Our input dataset is the set of labeled
flows from our controlled experiments in §2.2. To evaluate
our classifiers, we use k-fold cross validation, where a ran-
dom (k � 1)/k of the flows in our dataset are used to train
the classifier, and the remaining 1/k of the flows are tested
for accuracy. This process is repeated n times to understand
the stability of our results (see §5).
Feature extraction. The problem of identifying whether a
flow contains PII is similar to the document classification
problem,5 so we use the “bag-of-words” model [29]. We
choose certain characters as separators and consider any-
thing between those separators to be words. Then for each
flow, we produce a vector of binary values where each word
that appears in a flow is set to 1, and each word that does not
is set to 0.

A key challenge for feature extraction in network flows is
that there is no standard token (e.g. whitespace or punctu-
ation) to use for splitting flows into words. For example, a

5Here, network flows are documents and structured data are words.

5

ReCon:

qThe retraining phase is important
§ FP decreased by 92%
§ FN increased by 0.5%

ReCon in the wild

q239 users in March 2016 (IRB approved)

q137 iOS, 108 Android devices

q14,101 PII found and 6,747 confirmed by
users

q21 apps exposing passwords in plaintext
§ Used by millions (Match, Epocrates)

§ Responsibly disclosed

Discussion

qChallenges
§ Encrypted Traffic (totally reliant on plaintext

traffic)
§ 10-fold cross validation, does it help?

• 2.2% FP and 3.5% FN, but what about overfitting?
• Network flows too diverse, is the model generalizable?

§ Can miss out on PII leaks (FN) if model not trained
for that class of PII. Standard program analysis
susceptible to false positives, but not false
negatives

Discussion - continued

qCan we use this approach for IoT devices?
§ Device Identification?
§ PII leakage?
§ Monitor if IoT devices “talk” to themselves?

Questions?

