ReCon: Revealing and Controlling PII Leaks in Mobile Network Systems

Jingjing Ren, Martina Lindorfer, Ashwin Rao, Arnaud Legout, David Choffnes (MobiSys '16)

Presented by: Umar Farooq

CS 563

Fall 2018

Mobile Phones today...

- Offer ubiquitous connectivity
- ☐ Equipped with a wide array of sensors
- ☐ Examples; GPS, camera, microphone etc.

Problems

- ☐ Personally identifiable info. (PII) leakage
 - Device Identifiers (IMEI, MAC address, etc.)
 - User Information (name, gender, contact info, etc.)
 - Location (GPS, zip code)
 - Credentials (?)
- Device Fingerprinting
- Cross Platform tracking

Goals for this work

- ☐ Identify PII leakage without a priori information
- □ Provide users a platform to view potential PII leaks (i.e increase user visibility and transparency)

Approach...

- □Opportunity: Almost all devices support VPNs
- ☐ Have a trusted third party system to audit network flows
 - Tunnel traffic to a controlled server (trusted server)
 - Measure, modify, shape or block traffic with user opt in

Why should this work?

So, what does a PII look like?

GET /index.html?id=12340;foo=bar;name=CS5 63@Illini;pass=jf3jNF#5h

How can we identify a PII leak?

Naïve approach: Pattern matching.

ReCon:

A system using supervised ML to accurately identify and control PII leaks from network traffic with crowdsource reinforcement.

Automatically Identifying PII leaks

- ☐ Hypothesis: PII leaks have distinguishing characteristics
 - Is it just simple key/value pairs (e-g "user_id=563")
 - Nope, leads to high FPR (5.1%) and high FNR (18.8%).
- □ Need to **learn** structure of PII leaks.
- □ Approach: Build ML classifiers to reliably detect leaks.
 - Doesn't require knowing PII in advance
 - Resilient to changes in PII formats over time.

- Manual test: top 100 apps from each official store
- Automatic test: top 850 Android apps from a third party store

• Feature extraction: bag of words

- Feature extraction: bag of words
- Use thresholds to remove infrequent or too frequent words

- Ground truth from the controlled experiments
- C4.5 decision tree
- Per-domain and per-OS classifier

Evaluation – Accuracy (CCR)

CDF of per-domain-and-OS (PDAO) classifier accuracy

- DT outperforms Naïve Bayes
- Time: DT based ensembles take more time than a simple DT
- More than 95% accuracy per-domain-and per OS 1
 - Greater than the General Classifier
 - 60% DTs zero error.

Evaluation – Accuracy (AUC)

CDF of per-domain-and-OS (PDAO) classifier AUC

- Area under the curve (AUC) [0,1]
 - Demonstrates the predictive power of the classifier
- Most (67%) DT-based classifiers have AUC = 1

Evaluation – Accuracy (FNR and FPR)

CDF of per-domain-and-OS (PDAO) classifier accuracy

Most DT based classifiers have zero FPs (71.4%) and FNs (76.2%)

Evaluation – Comparison with IFA

- ☐ Information flow analysis (IFA)
 - Resilient to encrypted / obfuscated flow
 - Dynamic IFA: Andrubis
 - Static IFA: Flowdroid
 - Hybrid IFA: AppAudit

Information flow analysis (IFA)

☐ Susceptible to **false positives**, but not false negatives

ReCon vs. static and dynamic analysis

ReCon:

- ☐ The retraining phase is important
 - FP decreased by 92%
 - FN increased by 0.5%

ReCon in the wild

- □239 users in March 2016 (IRB approved)
- □137 iOS, 108 Android devices
- □14,101 PII found and 6,747 confirmed by users
- □21 apps exposing passwords in plaintext
 - Used by millions (Match, Epocrates)
 - Responsibly disclosed

Discussion

☐ Challenges

- Encrypted Traffic (totally reliant on plaintext traffic)
- 10-fold cross validation, does it help?
 - 2.2% FP and 3.5% FN, but what about overfitting?
 - Network flows too diverse, is the model generalizable?
- Can miss out on PII leaks (FN) if model not trained for that class of PII. Standard program analysis susceptible to false positives, but not false negatives

Discussion - continued

- ☐ Can we use this approach for IoT devices?
 - Device Identification?
 - PII leakage?
 - Monitor if IoT devices "talk" to themselves?

Questions?

