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Intel Software Guard 
eXtensions (SGX) and 
Hyper-Threading



What is Intel SGX?

● Set of CPU instructions
● Present in Skylake and newer (6th gen and up)



What is Intel SGX?

● Lets programs create enclaves
○ Separate code and data
○ Supports multithreading
○ Enclaves have access to the 

program’s memory



What is Intel SGX?

● Hardware provides isolation between enclaves and untrusted world
○ Virtual memory isolation
○ Physical memory isolation
○ Memory encryption for swapped-out enclave pages



What is Hyper-Threading?

● Intel’s proprietary implementation of Simultaneous MultiThreading (SMT)

● Presents two logical cores on each physical CPU core

● Logical cores share execution units
○ Caches

○ Translation lookaside buffers (TLBs)

○ Branch prediction units (BPUs)

○ Floating point units (FPUs)

○ etc.



Hyper-Threading Side 
Channels



An Example: TLBleed

● Attack by Gras et al. from Vrije Universiteit Amsterdam
● The Translation Lookaside Buffer (TLB) caches virtual memory mappings

○ Hyper-Threads share TLBs (L1 Data TLB and L2 TLB)
● Side-channel attack allows an attacker to determine data access 

patterns of a target program
○ Private key reconstruction
○ Image reconstruction
○ etc.



An Example: TLBleed

● Demonstrated cryptographic key reconstruction
○ libgcrypt EdDSA
○ libgcrypt RSA (less effective due to larger key size)

● Unaffected by mitigations to side-channel cache attacks



Other examples, briefly:



HyperRace: A software 
defense against 
Hyper-Threading side 
channel attacks



Racing in Hyperspace: Closing 
Hyper-Threading Side Channels on SGX with 
Contrived Data Races
● Paper by Chen et al.

○ Ohio State University
○ Indiana University Bloomington
○ SKLOIS, Institute of Information Engineering, Chinese Academy of 

Sciences
● Proposed HyperRace, a tool to eliminate Hyper-Threading side channel 

attacks



Preventing Hyper-Threading Side Channels

● An attacker must schedule a thread on the same core as the enclave 
thread

● If we can prevent this from happening, the attacker would not be able to 
execute any kind of HT side channel attack!



Preventing Hyper-Threading Side Channels

● For each enclave thread, create a shadow thread
● Must keep checking whether the enclave thread and shadow thread are 

co-resident on the same core



Checking co-residency

● Use knowledge of shared resources across logical cores
● Chen et al. chose to use L1 cache

○ Each physical core has a private L1 cache
● Measure memory access timings through the cache



Checking co-residency

~5 cycles ~190 cycles (on Intel Skylake)



Enclave thread loop:

Write 0 to v

Wait for 10 cycles

Read v

Co-residency tests using contrived data races

Shadow enclave thread loop:

Write 1 to v

● Intel SGX does not support secure clock instructions
● Chen et al. use contrived data races on an integer v



Co-residency tests using contrived data races

● Enclave thread will read  1 with high probability if co-resident
● Enclave thread will read  1 with low probability if not co-resident

Putting it another way:

● Co-resident: communication time < execution time
● Not co-resident: communication time > execution time



When should co-residency checks be used?

● AEX: Asynchronous Enclave eXit
○ Executed when enclave code is interrupted (context switches)
○ Saves registers, flushes TLB, etc.

● Must recheck co-residency after an AEX



Co-residency tests under stronger attacker 
model

Chen et al. consider an attacker who can:

● Cause cache contention
● Adjust CPU frequency
● Cache primes
● Disabling caching
● Disable caching + adjust CPU frequency
● ...





Co-residency tests under stronger attacker 
model

New design must satisfy two requirements under new attacker model:

1. Enclave thread (T
0

) and shadow thread (T
1

) observe data races on the 
shared variable v with high probabilities when they are co-located

2. When T
0

 and T
1

 are not co-located, at least one of them observes data 
races with low probabilities



Security Evaluation of Co-residency Test

Attacker cannot meet both security requirements!

Considered:

● Latency of cache eviction
● Latency of cross-core communication
● Effects of CPU frequency change
● Effects of disabling caching



Co-residency tests under stronger attacker 
model



Determining co-location statistically

● Each trial is a Bernoulli random variable with parameter p
○ Co-location with probability p
○ No co-location with probability 1-p

● Each trial is independent because the two threads are synchronized every 
round



Determining co-location statistically

Running hypothesis testing:

● Define q as the observed ratio of passed co-location tests
● Define p as the expected ratio of passed co-location tests

Null hypothesis H0: q ≥ p

Alternative hypothesis H1: q < p



Determining co-location statistically



Implementing HyperRace

● Implemented as LLVM IR optimization pass when compiling enclave 
code
○ Perform AES detection code every m instructions
○ Execute co-location test routines
○ If co-location test fails, can retry or terminate



Performance Evaluation

Evaluation performed on:

● i7 6700 quad core (eight logical cores)
● 32 GB RAM
● p-value = 1e-6
● Ran nbench as enclave code and measured overhead of HyperRace



Memory Overhead

q represents one AEX detection every q instructions in a basic block











● Modest to high performance overhead
○ Depends highly on q

● Cost of non co-residency detection of enclave thread and shadow thread 
is high
○ Enclave thread should terminate itself
○ Attacker can perform denial-of-service
○ Shadow thread is not doing “useful” work

Limitations of HyperRace



Thank you!

Any questions?
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Motivation behind Intel 
SGX



Motivation: defending against malicious 
programs

● Preventing malicious user-space apps from doing damage to our app
○ Process isolation
○ Virtual memory
○ Protection rings



Motivation: defending 
against malicious 
programs

● Apps protected from 
each other

● OS protected from 
malicious apps



Motivation: use 
privilege escalation

● Malicious app can 
attack privileged 
code, get full 
privileges

● Privileged code: 
hypervisor, OS 
kernel



Insight: reduce the 
attack surface

● Apps can be attacked from 
multiple angles
○ OS
○ Hypervisor (VMM)
○ Hardware, somewhat?



Insight: reduce the 
attack surface

● Let’s give an app the power to 
protect itself, using hardware

● Attack surface is minimized: only 
app itself, and hardware (CPU)


