Racing in Hyperspace:
Closing Hyper-Threading
Side Channels on SGX
with Contrived Data

Races

CS 563
Young Li
10/31/18




Intel Software Guard

eXtensions (SGX) and
Hyper-Threading



What is Intel SGX?

e Set of CPU instructions
e Presentin Skylake and newer (6th gen and up)



What is Intel SGX?

e Lets programs create enclaves

(@)

(@)

(@)

Separate code and data
Supports multithreading
Enclaves have access to the
program’s memory

User Process Enclave



What is Intel SGX?

e Hardware provides isolation between enclaves and untrusted world
o Virtual memory isolation
o Physical memory isolation
o Memory encryption for swapped-out enclave pages



What is Hyper-Threading?

e Intel’s proprietary implementation of Simultaneous MultiThreading (SMT)
e Presentstwo logical cores on each physical CPU core
e Logical cores share execution units
o Caches
Translation lookaside buffers (TLBs)
Branch prediction units (BPUs)
Floating point units (FPUs)
etc.

o O O O



Hyper-Threading Side \
Channels



An Example: TLBleed

e Attack by Gras et al. from Vrije Universiteit Amsterdam
The Translation Lookaside Buffer (TLB) caches virtual memory mappings
o Hyper-Threads share TLBs (L1 Data TLB and L2 TLB)
e Side-channel attack allows an attacker to determine data access
patterns of a target program
o Private key reconstruction
o Image reconstruction
o etc



An Example: TLBleed

e Demonstrated cryptographic key reconstruction

o libgcrypt EADSA

o libgecrypt RSA (less effective due to larger key size)
e Unaffected by mitigations to side-channel cache attacks



\ Other examples, briefly:

TABLE 1I
HYPER-THREADING SIDE CHANNELS.

Side Channels Shared Cleansed at AEX | Hyper-Threading only
Caches Yes Not flushed No
BPUs Yes Not flushed No
Store Buffers No N/A Yes
FPUs Yes N/A Yes
TLBs Yes Flushed Yes




defense against
Hyper-Threading side
channel attacks

HyperRace: A software \



Racing in Hyperspace: Closing
\ Hyper-Threading Side Channels on SGX with
Contrived Data Races

e Paper by Chenetal.
o Ohio State University
o Indiana University Bloomington
o SKLOIS, Institute of Information Engineering, Chinese Academy of
Sciences
e Proposed HyperRace, a tool to eliminate Hyper-Threading side channel
attacks



Preventing Hyper-Threading Side Channels

e An attacker must schedule a thread on the same core as the enclave
thread

e If we can prevent this from happening, the attacker would not be able to
execute any kind of HT side channel attack!



Preventing Hyper-Threading Side Channels

e For eachenclave thread, create a shadow thread
e Must keep checking whether the enclave thread and shadow thread are
co-resident on the same core



Checking co-residency

e Use knowledge of shared resources across logical cores
e Chenetal.chosetousellcache

o Each physical core has a private L1 cache
e Measure memory access timings through the cache



Checking co-residency

<+— Read/Write <«+«—— Cache coherence protocol messages

Physical core Physical core Physical core

Logical | Logical Logical Logical
core 0O core 1 core 0O core 1
]

Co-located Not co-located

~5 cycles ~190 cycles  (onintel skylake)



Co-residency tests using contrived data races

e Intel SGX does not support secure clock instructions
e Chenet al. use contrived data races on an integer v

Enclave thread loop:
Write 0 to v
Wait for 10 cycles

Read v

Shadow enclave thread loop:

Write 1 to v




Co-residency tests using contrived data races

e Enclave thread will read 1 with high probability if co-resident
e Enclave thread will read 1 with low probability if not co-resident

Putting it another way:

e Co-resident: communication time < execution time
e Not co-resident: communication time > execution time



When should co-residency checks be used?

e AEX: Asynchronous Enclave eXit
o Executed when enclave code is interrupted (context switches)
o Savesregisters, flushes TLB, etc.

e Must recheck co-residency after an AEX



Co-residency tests under stronger attacker
model|

Chen et al. consider an attacker who can:

Cause cache contention

Adjust CPU frequency

Cache primes

Disabling caching

Disable caching + adjust CPU frequency



A refined data-race design

Communication time
L —
Protected

thread read |

—

Shadow write write
thread

* When not co-located, communication time > execution time

* Each thread read the value written by the other thread with
very low probability.




Co-residency tests under stronger attacker
model|

New design must satisfy two requirements under new attacker model:

1. Enclave thread (TO) and shadow thread (T,) observe data races on the
shared variable v with high probabilities when they are co-located
2. When T, and T, are not co-located, at least one of them observes data

races with low probabilities



Security Evaluation of Co-residency Test

Attacker cannot meet both security requirements!

Considered:
e Latency of cache eviction
e Latency of cross-core communication
e Effects of CPU frequency change
e [Effects of disabling caching



Co-residency tests under stronger attacker

Thread 1)

<initialization>:
$colocation_count,
¥ continuous numbe
¢ €O ) st counter 5 %$rll, %rlo0
<synchron1zatzon> %$rl0, %
; cquire lock shl $b_count,
.syncO:
(sync_addrl)
(sync_addr0)
.syncl
jmp .syncO
.syncl:
mf
v $0, (sync_addr0)
<1n1t1allze a round>:
$begin0, %rs
$1; %rb
mfence
mov $addr_v, %r8 jec <
<co-location test>: | cmp $end0, %rsi
o 03 e .LO

» Findsh A location

<all rounds finished?>:

lock 1

mov - fa I
<update counter>:

happen

Thread T3

<initialization>:
Scolocation_count,

counter

<synchron1zat10n>~
. relea lock O

(sync_addr0)
, (sync_addrl)
e .sync3
jmp .sync2
.sync3:
mfence
v $0, (sync_addrl)
<initialize a round>:
$beginl,
$1, <

v Saddr_v, %r8
<co-location test>:
L2

(%r8),
<update counter>:
>0 10

$1,

ntinuous number?

_count,
ler

ast number
<store>:

mov

s Findsh; 1
<all rounds finished?>:
acquire lock 1




Determining co-location statistically

e Eachtrialis a Bernoullirandom variable with parameter p
o Co-location with probability p
o No co-location with probability 1-p
e Eachtrialis independent because the two threads are synchronized every
round



Determining co-location statistically

Running hypothesis testing:

e Define g as the observed ratio of passed co-location tests
e Define p as the expected ratio of passed co-location tests

Null hypothesis Hyqzp

Alternative hypothesis  H. :q<p



Determining co-location statistically

TABLE VI
EVALUATION OF FALSE NEGATIVE RATES.

: . . false negative rates
Scenario Po P1 (o = le—d)

1 0.0004 | 0.0007 0.000

.
2 0.000
3 0.000
1 0.000




Implementing HyperRace

e Implemented as LLVM IR optimization pass when compiling enclave
code
o Perform AES detection code every m instructions
o Execute co-location test routines
o If co-location test fails, can retry or terminate



Performance Evaluation

Evaluation performed on:

i7 6700 quad core (eight logical cores)

32 GB RAM

p-value = 1e-6

Ran nbench as enclave code and measured overhead of HyperRace



Memory Overhead

TABLE VII
MEMORY OVERHEAD (NBENCH).

756, 418
Overhead | | 166% | 183% | 93.7% | 37.1%

q represents one AEX detection every g instructions in a basic block



0.981
944 0.952
-y 0.897 0.900 0830 0.874

0.752

per second
© ©
» (0]

©
~

&
N

2]
c
ey
©
b
O
=
S
o
+=
©
O]
N
©
=
p—
]
Z

o

60
N
F
00

Fig. 8. Normalized number of iterations of nbench applications when running
with a busy looping program on the co-located logical core.




20/15/10/5 means one additional AEX

detection every ¢ instructions within a basic block.

:m0505
=N

(LI | I [ L |
CoCOoToTOT

peayIan0 pazijewlo

<
88}
<
O
S
)
2]
=
|
O
g
.
(=
—
I
(=
o
o
=
Q
o}
e
3}
o]
<
Q
<
o
—
0
5
=)
o
=
5]
=
—
)
>
o
0
g
=
=
=
(a4
o
o
oS

detection per basic block; g




250 AEXs per second I
427 AEXs per second =
611 AEXs per second 74
1000 AEXs per second E=XXJ

=
(&
|
(=)
=
O
=
=
nn
+—
w2
Q
=1
c
o
=
<
Q
o
2
Q
en
g
&
S
G
—
9]
o
G-
o
e
<
o)
=
-
O
>
o
)
£
+—
=
=
~

X
Te]
Al
o

peayJon0 pazijew.o

Fig. 10.




0.240 0.228

Fig. 11. Overhead of crypto algorithms.




Limitations of HyperRace

e Modest to high performance overhead
o Depends highly ong
e Cost of non co-residency detection of enclave thread and shadow thread
is high
o Enclave thread should terminate itself
o Attacker can perform denial-of-service
o Shadow thread is not doing “useful” work



Thank you!

Any questions?



sources

o

G. Chen et al.,, "Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races,"
2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, US, , pp. 388-404.
doi:10.1109/5P.2018.00024

G. Chen et al., “Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races”
slides (http://web.cse.ohio-state.edu/~chen.4329/slides/sp18.pptx)

B. Gras, K. Razavi, H. Bos, C. Giuffrida, Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks, in: USENIX Security, 2018. https://www.vusec.net/download/?t=papers/tibleed sec18.pdf.

F. McKeen, Intel SGX slides (https://web.stanford.edu/class/ee380/Abstracts/150415-slides.pdf)

"TLBleed." VUSec. Accessed October 22, 2018. https://www.vusec.net/projects/tlbleed/.

Wang, Wenhao, Guoxing Chen, Xiaorui Pan, Yingian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, and
Carl A. Gunter. "Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX." In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2421-2434.
ACM, 2017.



http://web.cse.ohio-state.edu/~chen.4329/slides/sp18.pptx
https://www.vusec.net/download/?t=papers/tlbleed_sec18.pdf
https://web.stanford.edu/class/ee380/Abstracts/150415-slides.pdf
https://www.vusec.net/projects/tlbleed/

Backup Slides



Motivation behind Intel \
SGX



Motivation: defending against malicious
\ programs

e Preventing malicious user-space apps from doing damage to our app
o Processisolation
o Virtual memory
o Protectionrings



Motivation: defending
against malicious
programs

N\

e Apps protected from
each other

e OS protected from
malicious apps




Motivation: use
privilege escalation

e Malicious app can
attack privileged
code, get full
privileges

e Privileged code:
hypervisor, OS
kernel




Insight: reduce the
attack surface Attack surface toda

e Apps can be attacked from
multiple angles
o OS
o Hypervisor (VMM)
o Hardware, somewhat?

Hardware

|

Attack SurfaceJI B

- g




Insight: reduce the
attack surface

e Let'sgive an app the power to
protect itself, using hardware

e Attack surface is minimized: only
app itself, and hardware (CPU)

B

Attack SurfacejI o

%W




