
Racing in Hyperspace:
Closing Hyper-Threading
Side Channels on SGX
with Contrived Data
Races

CS 563
Young Li
10/31/18

Intel Software Guard
eXtensions (SGX) and
Hyper-Threading

What is Intel SGX?

● Set of CPU instructions
● Present in Skylake and newer (6th gen and up)

What is Intel SGX?

● Lets programs create enclaves
○ Separate code and data
○ Supports multithreading
○ Enclaves have access to the

program’s memory

What is Intel SGX?

● Hardware provides isolation between enclaves and untrusted world
○ Virtual memory isolation
○ Physical memory isolation
○ Memory encryption for swapped-out enclave pages

What is Hyper-Threading?

● Intel’s proprietary implementation of Simultaneous MultiThreading (SMT)

● Presents two logical cores on each physical CPU core

● Logical cores share execution units
○ Caches

○ Translation lookaside buffers (TLBs)

○ Branch prediction units (BPUs)

○ Floating point units (FPUs)

○ etc.

Hyper-Threading Side
Channels

An Example: TLBleed

● Attack by Gras et al. from Vrije Universiteit Amsterdam
● The Translation Lookaside Buffer (TLB) caches virtual memory mappings

○ Hyper-Threads share TLBs (L1 Data TLB and L2 TLB)
● Side-channel attack allows an attacker to determine data access

patterns of a target program
○ Private key reconstruction
○ Image reconstruction
○ etc.

An Example: TLBleed

● Demonstrated cryptographic key reconstruction
○ libgcrypt EdDSA
○ libgcrypt RSA (less effective due to larger key size)

● Unaffected by mitigations to side-channel cache attacks

Other examples, briefly:

HyperRace: A software
defense against
Hyper-Threading side
channel attacks

Racing in Hyperspace: Closing
Hyper-Threading Side Channels on SGX with
Contrived Data Races
● Paper by Chen et al.

○ Ohio State University
○ Indiana University Bloomington
○ SKLOIS, Institute of Information Engineering, Chinese Academy of

Sciences
● Proposed HyperRace, a tool to eliminate Hyper-Threading side channel

attacks

Preventing Hyper-Threading Side Channels

● An attacker must schedule a thread on the same core as the enclave
thread

● If we can prevent this from happening, the attacker would not be able to
execute any kind of HT side channel attack!

Preventing Hyper-Threading Side Channels

● For each enclave thread, create a shadow thread
● Must keep checking whether the enclave thread and shadow thread are

co-resident on the same core

Checking co-residency

● Use knowledge of shared resources across logical cores
● Chen et al. chose to use L1 cache

○ Each physical core has a private L1 cache
● Measure memory access timings through the cache

Checking co-residency

~5 cycles ~190 cycles (on Intel Skylake)

Enclave thread loop:

Write 0 to v

Wait for 10 cycles

Read v

Co-residency tests using contrived data races

Shadow enclave thread loop:

Write 1 to v

● Intel SGX does not support secure clock instructions
● Chen et al. use contrived data races on an integer v

Co-residency tests using contrived data races

● Enclave thread will read 1 with high probability if co-resident
● Enclave thread will read 1 with low probability if not co-resident

Putting it another way:

● Co-resident: communication time < execution time
● Not co-resident: communication time > execution time

When should co-residency checks be used?

● AEX: Asynchronous Enclave eXit
○ Executed when enclave code is interrupted (context switches)
○ Saves registers, flushes TLB, etc.

● Must recheck co-residency after an AEX

Co-residency tests under stronger attacker
model

Chen et al. consider an attacker who can:

● Cause cache contention
● Adjust CPU frequency
● Cache primes
● Disabling caching
● Disable caching + adjust CPU frequency
● ...

Co-residency tests under stronger attacker
model

New design must satisfy two requirements under new attacker model:

1. Enclave thread (T
0

) and shadow thread (T
1

) observe data races on the
shared variable v with high probabilities when they are co-located

2. When T
0

 and T
1

 are not co-located, at least one of them observes data
races with low probabilities

Security Evaluation of Co-residency Test

Attacker cannot meet both security requirements!

Considered:

● Latency of cache eviction
● Latency of cross-core communication
● Effects of CPU frequency change
● Effects of disabling caching

Co-residency tests under stronger attacker
model

Determining co-location statistically

● Each trial is a Bernoulli random variable with parameter p
○ Co-location with probability p
○ No co-location with probability 1-p

● Each trial is independent because the two threads are synchronized every
round

Determining co-location statistically

Running hypothesis testing:

● Define q as the observed ratio of passed co-location tests
● Define p as the expected ratio of passed co-location tests

Null hypothesis H0: q ≥ p

Alternative hypothesis H1: q < p

Determining co-location statistically

Implementing HyperRace

● Implemented as LLVM IR optimization pass when compiling enclave
code
○ Perform AES detection code every m instructions
○ Execute co-location test routines
○ If co-location test fails, can retry or terminate

Performance Evaluation

Evaluation performed on:

● i7 6700 quad core (eight logical cores)
● 32 GB RAM
● p-value = 1e-6
● Ran nbench as enclave code and measured overhead of HyperRace

Memory Overhead

q represents one AEX detection every q instructions in a basic block

● Modest to high performance overhead
○ Depends highly on q

● Cost of non co-residency detection of enclave thread and shadow thread
is high
○ Enclave thread should terminate itself
○ Attacker can perform denial-of-service
○ Shadow thread is not doing “useful” work

Limitations of HyperRace

Thank you!

Any questions?

Sources

1. G. Chen et al., "Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races,"
2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, US, , pp. 388-404.
doi:10.1109/SP.2018.00024

2. G. Chen et al., “Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races”
slides (http://web.cse.ohio-state.edu/~chen.4329/slides/sp18.pptx)

3. B. Gras, K. Razavi, H. Bos, C. Giuffrida, Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks, in: USENIX Security, 2018. https://www.vusec.net/download/?t=papers/tlbleed_sec18.pdf.

4. F. McKeen, Intel SGX slides (https://web.stanford.edu/class/ee380/Abstracts/150415-slides.pdf)
5. "TLBleed." VUSec. Accessed October 22, 2018. https://www.vusec.net/projects/tlbleed/.
6. Wang, Wenhao, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, and

Carl A. Gunter. "Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX." In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2421-2434.
ACM, 2017.

http://web.cse.ohio-state.edu/~chen.4329/slides/sp18.pptx
https://www.vusec.net/download/?t=papers/tlbleed_sec18.pdf
https://web.stanford.edu/class/ee380/Abstracts/150415-slides.pdf
https://www.vusec.net/projects/tlbleed/

Backup Slides

Motivation behind Intel
SGX

Motivation: defending against malicious
programs

● Preventing malicious user-space apps from doing damage to our app
○ Process isolation
○ Virtual memory
○ Protection rings

Motivation: defending
against malicious
programs

● Apps protected from
each other

● OS protected from
malicious apps

Motivation: use
privilege escalation

● Malicious app can
attack privileged
code, get full
privileges

● Privileged code:
hypervisor, OS
kernel

Insight: reduce the
attack surface

● Apps can be attacked from
multiple angles
○ OS
○ Hypervisor (VMM)
○ Hardware, somewhat?

Insight: reduce the
attack surface

● Let’s give an app the power to
protect itself, using hardware

● Attack surface is minimized: only
app itself, and hardware (CPU)

